
# THE CORPORATION OF THE CITY OF SARNIA

# 2013

# Asset Management Plan



# CORE INFRASTRUCTURE SERVICES





Prepared by the

Engineering and Finance

Departments

The Corporation

of

The City of Sarnia

# TABLE OF CONTENTS

|    |                                                        | Page |
|----|--------------------------------------------------------|------|
|    | Executive Summary                                      |      |
| 2. | Introduction                                           |      |
|    | 2.1 The City and Infrastructure Assets                 |      |
|    | 2.2 Core Infrastructure Services                       |      |
|    | 2.3 Objectives of the Asset Management Plan            | 12   |
|    | 2.4 Guiding Principles                                 |      |
|    | 2.5 GIS and Data Management                            | 14   |
|    | 2.6 General                                            |      |
| 3. | State of Local infrastructure                          |      |
|    | 3.1 Existing Infrastructure network                    | 17   |
|    | 3.1.1 Replacement Cost and Valuation                   | 18   |
|    | 3.2 Methodology                                        | 19   |
|    | 3.2.1 Data Collection and Data Management              | 19   |
|    | 3.2.2 Network Segmentation                             |      |
|    | 3.2.3 Condition Assessment and Analysis                |      |
|    | 3.3 Water Distribution System                          |      |
|    | 3.3.1 Inventory                                        |      |
|    | 3.3.2 Condition                                        |      |
|    | 3.3.3 System Capacity and Expansion                    | 31   |
|    | 3.3.4 Data Flow Verification Policy                    |      |
|    | 3.3.5 Analysis                                         |      |
|    | 3.4 Wastewater Collection Systems                      |      |
|    | 3.4.1 Inventory                                        |      |
|    | 3.4.2 Condition                                        |      |
|    | 3.4.2.1 Sewers                                         | 36   |
|    | 3.4.2.2 Pumping Stations                               | 37   |
|    | 3.4.2.3 Wastewater Treatment Facilities                |      |
|    | 3.4.3 System Capacity and Expansion                    |      |
|    | 3.4.4 Data flow verification policy                    |      |
|    | 3.4.5 Analysis                                         |      |
|    | 3.5 Road network                                       |      |
|    | 3.5.1 Inventory, Condition and Analysis                |      |
|    | 3.5.2 System Expansion                                 |      |
|    | 3.5.3 Data flow verification policy                    |      |
|    | 3.6 Bridges and Culverts                               |      |
| 4. | Desired Levels of Service                              |      |
|    | Asset Management Strategy                              |      |
|    | 5.1 Organization Overview of Asset Management Strategy |      |
|    | 5.2 Integrated Approach for Linear Infrastructures     |      |
|    | 5.3 Planned Actions                                    |      |
|    | 5.3.1 Non-infrastructure Solutions                     |      |
|    | 5.3.2 Maintenance, Renewal and Rehabilitation          |      |
|    | •                                                      |      |

| 5.3.2.1 Road Network                                              | 55   |
|-------------------------------------------------------------------|------|
| 5.3.2.2 Sewer Network                                             | 63   |
| 5.3.2.3 Water Network                                             | 66   |
| 5.4 Risks Associated with the Strategies                          | 68   |
| 5.5 Risk Analysis                                                 | 68   |
| 6. Financing Strategy                                             | 69   |
| 6.1 Introduction                                                  | 69   |
| 6.2 Funding Sources                                               | 70   |
| 6.3 Linear Assets                                                 |      |
| 6.3.1 Linear Asset Scenario 1                                     |      |
| 6.3.1.1 Scenario 1 Background                                     |      |
| 6.3.1.2 Current Linear Asset Deficit for Scenario 1               |      |
| 6.3.1.3 Overall Linear Asset Deficit for Scenario 1               |      |
| 6.3.1.4 Scenario 1 Replacement Life Cycle                         |      |
| 6.3.2 Linear Asset Scenario 2                                     |      |
| 6.3.2.1 Scenario 2 Background                                     |      |
| 6.3.2.2 Current Linear Asset Deficit for Scenario 2               |      |
| 6.3.2.3 Overall Linear Asset Deficit for Scenario 2               |      |
| 6.3.2.4 Scenario 2 Replacement Life Cycle                         |      |
| 6.3.3 Linear Asset Scenario 3                                     |      |
| 6.3.3.1 Scenario 3 Background                                     |      |
| 6.3.3.2 Current Linear Asset Deficit for Scenario 3               |      |
| 6.3.3.3 Overall Linear Asset Deficit for Scenario 3               |      |
| 6.3.3.4 Scenario 3 Replacement Life Cycle                         |      |
| 6.3.4 Linear Asset Scenario Conclusion                            |      |
| 6.3.5 Optional Scenario                                           |      |
| 6.4 Non-Linear Assets                                             |      |
| 7. Recommendations                                                | 101  |
|                                                                   |      |
|                                                                   |      |
| LIST OF FIGURES                                                   | _    |
|                                                                   | Page |
| Figure 1 Percentage of Replacement Cost of the Core Infrastructur |      |
| Figure 2 Linear Assets Age Distribution                           |      |
| Figure 3 The City of Sarnia Asset Management Process              |      |
| Figure 4 Age Distribution of Existing Networks                    |      |
| Figure 5 Sample Integrated Segment for Linear Assets              |      |
| Figure 6 Integrated Analysis Process                              |      |
| Figure 7 State of Linear Infrastructure                           |      |
| Figure 8 Watermain Pipe Deterioration Curves                      |      |
| Figure 9 Rehabilitation and Replacement Thresholds for Sewer Net  |      |
| Figure 10 Watermain Installation Years Distribution Hyetograph    |      |
| Figure 11 Watermain Material Distribution by Percentage           | 28   |

| Figure 12 | Annual Water Loss from 2008 to 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|           | Watermain Age and Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Figure 14 | State of Water Infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31 |
| Figure 15 | Water Network Deterioration Curves-Modified Cast Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33 |
| Figure 16 | Sanitary Pipe Material Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 |
| Figure 17 | Combined Sewer Pipe Material Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35 |
| Figure 18 | Storm Sewer Pipe Material Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35 |
| Figure 19 | Sanitary and Combined Sewers Installation Age Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36 |
| Figure 20 | State of Linear Wastewater Infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36 |
|           | Water Pollution Control Centre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Figure 22 | Water Pollution Control Centre Upgrades                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41 |
|           | Average Condition Score of Water Pollution Control Centre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Figure 24 | Sewer Network Deterioration Curves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 |
| Figure 25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Figure 26 | Percentage of Road Network below Minimum PCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46 |
| Figure 27 | O Company of the comp |    |
| Figure 28 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 |
| Figure 29 | Integrated Approach for Linear Infrastructures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53 |
| Figure 30 | Sample Project Replacement Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Figure 31 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|           | Deterioration Curve for Road Rehabilitation Option 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Figure 33 | Deterioration Curve for Road Rehabilitation Option 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Figure 34 | Deterioration Curve for Road Rehabilitation Option 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58 |
| Figure 35 | Deterioration Curve for Road Reconstruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Figure 36 | . 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Figure 37 | Proposed Strategy II for Road Rehabilitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Figure 38 | Proposed Strategy III for Road Rehabilitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Figure 39 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|           | Proposed Strategy V for Road Rehabilitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| •         | Sewer Non-Structural Relining Deterioration Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|           | Sewer Structural Relining Deterioration Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|           | Sewer Reconstruction Deterioration Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| •         | Linear Asset Funding Sources Breakdown 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|           | Linear Asset Funding Sources Breakdown 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| •         | Linear Asset Funding Sources Breakdown 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|           | Linear Asset Funding Sources Breakdown 2029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|           | Integrated Asset life Cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|           | Yearly Linear Asset Need Forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Figure 50 | Condition Increase across Asset Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91 |

#### **LIST OF TABLES**

|           |                                                             | Page |
|-----------|-------------------------------------------------------------|------|
| Table 1   | Total Replacement Cost of Core Infrastructure Assets        | 9    |
| Table 2 ( | Current Need of all Core Infrastructure Assets              | 10   |
| Table 3 I | Rehabilitation Need Based on Window of Opportunity          | 10   |
| Table 4 I | Percent Age Distribution of Existing Networks               | 18   |
| Table 5 ( | Current Replacement Cost of Core Infrastructures            | 18   |
| Table 6 F | inancial Valuation of City's Core Infrastructures           | 19   |
| Table 7   | Sample Data Attributed Linear Assets                        | 20   |
| Table 8 I | Evaluation Criteria for the State of Linear Infrastructures | 24   |
| Table 9   | Quick Facts about the City's Core Infrastructure Assets     | 26   |
| Table 10  | Factors for Determining Watermain Condition                 | 30   |
| Table 11  | Wastewater Pump Stations Components Service Life            | 38   |
| Table 12  | Wastewater Pump Station Capacity and Condition Assessment   | 39   |
| Table 13  | Water Pollution Control Centre Condition Assessment         | 42   |
| Table 14  | Summary of Bridge Inspections                               | 49   |
| Table 15  | Bridge and Culvert Capital Needs                            | 50   |
| Table 16  | Linear Infrastructure Service Level Thresholds              | 51   |
| Table 17  | Road Treatment Options/Alternatives                         | 56   |
| Table 18  | Rehabilitation Strategies for Roads                         | 62   |
| Table 19  | Typical Cost of Sewer Rehabilitation Strategies             | 65   |
| Table 20  | Past Maintenance Activities for Watermains                  | 67   |
| Table 21  | Current Need of all Linear Core Infrastructure Assets       | 69   |
| Table 22  | Current Need of all None Linear Core Infrastructure Assets  | 69   |
| Table 23  | Prior Years Actual Linear Expenditures                      | 73   |
| Table 24  | Projected Funding Sources for 20 Years                      | 74   |
|           | Projected Project Completion Scenario 1                     |      |
| Table 26  | Summary of Project Completion Scenario 1                    | 76   |
| Table 27  | Comparative Replacement Cost of Individual vs Integrated    | 77   |
|           | Scenario 1 Current Linear Asset Deficit                     |      |
| Table 29  | Current Linear Asset Deficit Addressed in Scenario 1        | 78   |
| Table 30  | Overall Linear Asset Deficit Addressed in Scenario 1        | 79   |
|           | Scenario 1 Average Replacement Life Cycles                  |      |
|           | Projected Project Completion Scenario 2                     |      |
| Table 33  | Summary of Project Completion Scenario 2                    | 82   |
| Table 34  | Scenario 2 Current Linear Asset Deficit                     | 83   |
| Table 35  | Current Linear Asset Deficit Addressed in Scenario 2        | 83   |
| Table 36  | Overall Linear Asset Deficit Addressed in Scenario 2        | 84   |
| Table 37  | Scenario 2 Average Replacement Life Cycles                  | 85   |
| Table 38  | Projected Project Completion Scenario 3                     | 86   |
| Table 39  | Summary of Project Completion Scenario 3                    | 87   |
| Table 40  | Scenario 3 Current Linear Asset Deficit                     | 87   |
| Table 41  | Current Linear Asset Deficit Addressed in Scenario 3        | 88   |

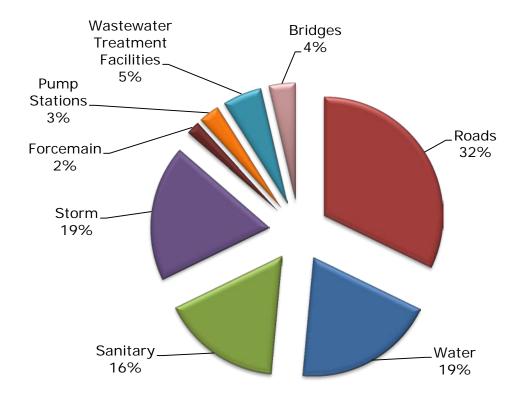
| Table 42 Overall Linear Asset Deficit Addressed in Scenario 3        | 89   |
|----------------------------------------------------------------------|------|
| Table 43 Scenario 3 Asset Average Replacement Life Cycles            |      |
| Table 44 Quantitiy of Work Breakdown in 3 Financial Scenarios        |      |
| Table 45 Overall Linear Asset Deficit Addressed in Optional Scenario |      |
| Table 46 Prior Years Actual Non-Linear Expenditures                  |      |
| Table 47 Projected Project Completion Pump Stations                  |      |
| Table 48 Projected Project Completion Wastewater Treatment Plant     |      |
| Table 49 Projected Project Completion Bridges                        |      |
| Table 50 Current Pump Station Deficit                                |      |
| Table 51 Current Wastewater Treatment Facilities Deficit             |      |
| Table 52 Current Bridge Deficit                                      |      |
| Table 53 Top Identified Priority Projects across Asset Type          |      |
|                                                                      |      |
| LIST OF APPENDICES                                                   |      |
|                                                                      | Page |
| Appendix A Priority Listings of Linear Infrastructures               | A1   |
| Appendix B Linear Infrastructure Needs Maps                          |      |
| Appendix C Unit Prices of Linear Assets                              |      |
| Appendix D Assumptions                                               |      |
| Appendix E References                                                |      |
|                                                                      | == • |

# 1. Executive Summary

This Asset Management Plan document has been prepared for the core services of the City of Sarnia, including water, wastewater, roads and bridges. The Plan is intended to provide a comprehensive reference for renewing, operating, maintaining, building, replacing and disposing of the City's core Infrastructure Assets. The plan is based on the guidelines provided in the Province of Ontario Ministry of Infrastructure's Building Together Guide for Municipal Asset Management Plans.

The Asset Management Planning process is driving a change in philosophy regarding capital improvement. The old approach of "worst first" is being replaced with a more proactive approach focused on rehabilitation based on the window of opportunity; as the saying goes "A reconstruction today is a reconstruction tomorrow, rehabilitation today is a reconstruction tomorrow".

This Plan reflects on the current and desired system condition, level of service, optimal asset management and financial strategies based on currently available data and information on the core infrastructure services of the City.


The City's data collection programs and data updating processes are ongoing and the plan will be updated over time as more data in terms of condition, capacity, expansion and risks are available through ongoing data collection, modelling and master planning programs.

The total replacement cost, current needs, and rehabilitation needs based on windows of opportunity for the core infrastructure assets of the City are summarized as follows.

**Table 1 Total Replacement Cost of Core Infrastructure Assets** 

| Asset Type                         | Total Length<br>/Quantitiy | Replacement Cost |
|------------------------------------|----------------------------|------------------|
| Roads                              | 439 KM                     | \$598,994,645    |
| Watermains                         | 496 KM                     | \$358,541,104    |
| Sanitary Sewer                     | 336 KM                     | \$304,005,369    |
| Storm Sewer                        | 293 KM                     | \$345,547,560    |
| Forcemains                         | 51 KM                      | \$34,640,902     |
| Pump Stations                      | 57                         | \$52,663,000     |
| Wastewater Treatment<br>Facilities | 2                          | \$99,288,000     |
| Bridges                            | 27                         | \$67,053,899     |
| Total                              |                            | \$1,860,734,480  |

Figure 1 Percentage of Replacement Cost of the Core Infrastructure



**Table 2 Current Need of all Core Infrastructure Assets** 

| Asset Type                         | %<br>Current Need | Estimated<br>Cost | Length  |
|------------------------------------|-------------------|-------------------|---------|
| Roads                              | 13.2%             | \$51,289,568      | 57.9 KM |
| Water Distribution System          | 14.2%             | \$43,340,309      | 70.4 KM |
| Sanitary and Combined<br>Sewers    | 11.4%             | \$32,919,227      | 38.2 KM |
| Storm Sewers                       | 8.0%              | \$21,489,004      | 25.2 KM |
| Forcemains                         | 16.0%             | \$11,546,751      | 7.8 KM  |
| Pump Stations                      | 36.9%             | \$25,453,249      |         |
| Wastewater Treatment<br>Facilities | 8.4%              | \$8,300,000       |         |
| Bridges                            | 3.7%              | \$2,469,785       |         |
| Total Needs                        |                   | \$196,807,894     |         |

**Table 3 Rehabilitation Need Based on Window of Opportunity** 

| Asset Type                      | Length  | % Rehabilitation<br>Need | Estimated<br>Cost |
|---------------------------------|---------|--------------------------|-------------------|
| Roads                           | 35.7 KM | 8.1%                     | \$10,082,167      |
| Water Distribution<br>System    | 80.2 KM | 16.2%                    | \$19,928,453      |
| Sanitary and Combined<br>Sewers | 13.6 KM | 4.1%                     | \$4,351,997       |
| Storm Sewers                    | 6.3 KM  | 2.1%                     | \$4,030,509       |
| Total                           |         |                          | \$38,393,125      |

# 2. <u>Introduction</u>

# 2.1 The City and Infrastructure Assets

The City of Sarnia is situated on the south shore of Lake Huron at the headwaters of the St. Clair River. The current population of the City is approximately 72,000 people. The City has been confronted with increasing needs due to aging infrastructure and limited financial resources. Most of the City's infrastructures were installed and paid for during previous economic boom periods, in the 1950's; 1960's and 1970's. An "echo" effect is now occurring as infrastructure is reaching the end of its service life (American Water Works Associations, 2001).

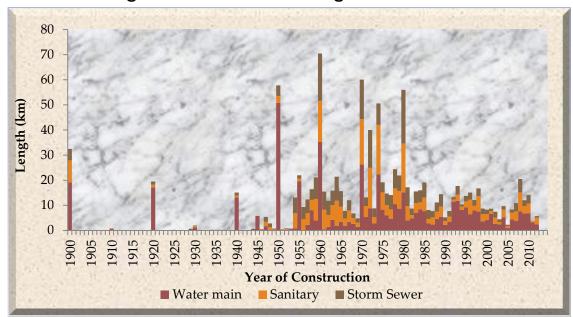



Figure 2 Linear Assets Age Distribution

The City completed an initial inventory assessment and identification of Capital Needs for the Linear Assets through Dillon Consulting Limited in 2005. As a result of the recommendations from the above study, the City implemented its current GIS system and initiated data collection programs.

A complete Road Condition Assessment was completed by the City through IMS Infrastructure Management Services in 2012. The City has also completed Master Plan study including system modelling for the sanitary sewer collection system through Stantec Consulting Limited.

#### 2.2 Core Infrastructure Services

The municipal core services as defined by the Province of Ontario include water, sewer, drainage, and road networks. As per recommendations of the Building Together Guide for Municipal Asset Management Plans, maintaining roads, bridges, water, wastewater and social housing assets should be a top priority.

The City of Sarnia is a lower-tier municipality within the County of Lambton. The social housing services are managed by the County of Lambton, and Water treatment and supply services are managed by the Lambton Area Water Supply System (LAWSS).

As a starting point, the following core infrastructures have been included in this asset management plan:

- i. Water Distribution System
- ii. Wastewater Collection System and Wastewater Treatment Systems
- iii. Storm Sewer System
- iv. Pumping Stations and Forcemains
- v. Roads and Bridges

# 2.3 Objectives of the Asset Management Plan

The City formed an Asset Management Committee in September 2012; initially consisting of City staff from the Engineering and Finance Departments, to put together this Asset Management Plan based on the Building Together Guide for Municipal Asset Management Plans. Engineering and Finance Departmental Heads chaired the committee with sub working groups.

The overall objectives of the plan are as follows:

- i. To provide a comprehensive reference for council, managers and City staff for renewing, operating, maintaining, building, replacing and disposing of the City's assets; and
- ii. To reflect the current and desired system conditions, levels of service and safety; and
- iii. To recommend optimal asset management and financial strategies; and
- iv. To set strategic priorities to optimize decisions; and

v. Maximize benefits, manage risks and provide satisfactory levels of service.

# 2.4 Guiding Principles

Guiding Principles, for developing this plan, were established consistent with the goals set out in the City's official Plan and the City's Integrated Community Sustainability Plan.

As per City's Draft official Plan: "Infrastructure tends to be capital intensive and carries high fixed costs that do not go down with reductions in population density. The Official Plan of the City promotes the optimal use and functioning of existing infrastructure in ways that reduce current costs and minimize future obligations, while preserving opportunities for future development."

The City of Sarnia has also completed the Integrated Community Sustainability Plan (ICSP). Sarnia City Council adopted the Sarnia ICSP in March 2013. This plan is aimed at helping the City build a socially, economically, culturally and environmentally sustainable community. As per the Sarnia ICSP, "The Sarnia Integrated Community Sustainability Plan is a reference and resource document that will be used by those planning and developing sustainable community projects to ensure that the targets, goals and outcomes for a sustainable community can be achieved."

The Guiding Principles established for the Asset Management Plan are summarized as follows:

- i. Maintaining Integrity of the City's Infrastructure and recognizing infrastructure life cycle costs; and
- ii. Mitigate combined sewer overflows and reduce basement flooding; and
- iii. Maintaining adequate fire flows and pressures in the City's water distribution system, supplying safe drinking water and protecting the receiving water quality; and
- iv. Maintaining or exceeding the current service levels to citizens;and
- v. Encouraging and implementing measures and activities that reduce resource consumption, waste and pollution; and
- vi. Ensuring whenever feasible, that those who benefit from municipal infrastructure pay for the services provided.

# 2.5 GIS and Data Management

The City has a comprehensive inventory of characteristics, attributes and conditions of the core infrastructure assets in our Geographic Information System (GIS). The City maintains ongoing data collection programs.

In July 2004, the City retained Dillon Consulting Limited to undertake the implementation of an Asset Management System including creating inventory of the linear assets and identification of capital needs. Due to limitations of budget and the availability of data, a sampling approach was adopted to carryout assessments. The timeline and progress of the City's asset management system is given as follows:

- i. The City completed an initial inventory assessment and identification of Capital Needs for the Linear Assets through Dillon Consulting Limited in 2005.
- ii. The City acquired Autodesk Map Guide "Mi-Town GIS Application" in 2006 and upgraded to ESRI Enterprise" Geo cortex" GIS system in 2010. The City also initiated data collection programs, along with hydrant flushing, water valve turning and sewer flushing programs.
- iii. A complete Road Condition Assessment was done by IMS Infrastructure Management Services in 2012.
- iv. The Sewer Condition Assessment is a challenging task for the City due to the uncertainty and the extent of sewer cleaning required. The sewer inspection program is currently ongoing in a phased approach.
- v. The City has completed a Sewer Collection System Modelling and Sewer Master Plan study through Stantec Consulting Ltd. in 2012.
- vi. The City is also undertaking a Water System Modelling and Water Distribution System Master Plan study through Stantec Consulting Ltd.
- vii. The Pumping Station Condition Assessment for the City was completed by R. V. Anderson Associates in 2009.
- viii. The City also has a regular bridge inspection program every 2 years as per Provincial regulation.
- ix. The infrastructure data in the GIS System is being updated on a regular basis.

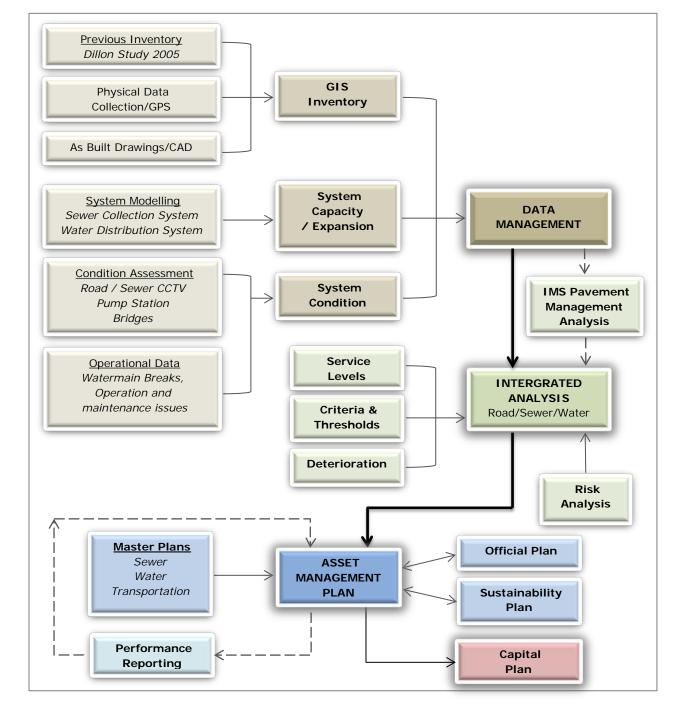



Figure 3 The City of Sarnia Asset Management Process

The majority of the information required for this Asset Management Plan, was available in the form of drawings, reports, GIS inventory, GIS maps, capacity assessments, condition assessments, infrastructure master plans, etc. All this information was integrated in the GIS system, and was analysed and assessed using the Integrated Analysis Engine (IAE).

#### 2.6 General

The City's current practice for prioritization of the capital projects are mainly based on combined sewer separation (combined sewers, sewer overflows, water quality and basement flooding), sewer and watermain breaks, known system capacity issues, operation and maintenance issues, known sewer back-ups, flooding complaints and design and construction constraints. These issues are discussed in various capital project meetings and projects are prioritized accordingly. All of the above factors have been incorporated, and analysed in developing this plan.

The Asset Management Plan Committee began by establishing various criteria for Linear Infrastructures Assets, namely road, water and sewers for the Asset Management Plan and added Pump Stations, Forcemains, Waste Water Treatment Facilities and Bridges thereafter. The integrated spreadsheet program was also developed to analyse various factors across the asset types and generate the priority lists of the projects, replacement costs, and capital improvement plans based on the established service levels.

The City has been actively exploring the opportunities of consolidating and sharing services with other municipalities to improve the service level and reduce cost to users. Recently the City of Sarnia entered into two separate agreements with the Township of St. Clair for interconnections of our water distribution systems, at two different locations along the southern boundary, thereby improving pressures, redundancy and water securities in the distribution systems.

In this Asset Management Plan the condition assessments of the sewer system are primarily based on accepted age and material based deterioration curves, as the condition assessments of the sewers are ongoing in phases. Once the actual condition assessments of all infrastructures assets are completed, the plan will be updated to fully reflect actual conditions rather than using projections based on deterioration curves.

This Plan addresses the short term and long term strategies for infrastructure rehabilitation, reconstruction, and renewal for the City's roads, bridges, water, and wastewater infrastructure. This plan is a living document and will be updated on a regular basis.

# 3. State of Local infrastructure

# 3.1 Existing Infrastructure network

The City of Sarnia currently manages approximately 439 kilometers of roads, 336 kilometers of sanitary and combined sewers, 293 kilometers of storm sewers, 53 sanitary pump stations, 4 stormwater pump station, 53 kilometers of sanitary and storm forcemains, 496 kilometers of watemains, two wastewater treatment facilities, and 25 bridges and culverts.

Most of the City's linear infrastructures were built from the 1950's through to the 1980's. The high growth years of 1900, 1920, and 1950 are a result of assumed construction years for some of the buried infrastructure where no as-built drawings were available. The assumed construction years were primarily based on the age of infrastructure. The following figure shows the age distribution of all the existing linear infrastructure assets.

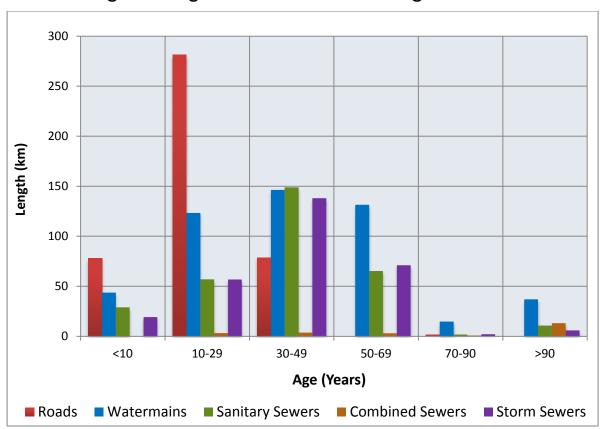



Figure 4 Age Distribution of Existing Networks

**Precent Age** Road Water Sanitary **Combined** Storm Distribution (km) (km) (km) (km) (km) (Years) >10 82% 91% 91% 100% 93% >30 18% 66% 73% 87% 74% >50 0% 37% 25% 71% 27% >70 0% 10% 4% 59% 3% >90 0% 7% 3% 56% 2%

**Table 4 Percent Age Distribution of Existing Networks** 

#### 3.1.1 Replacement Cost and Valuation

The Following tables summarize the current replacement cost and the financial accounting valuation of the City's core infrastructure Assets. The financial valuation is based on historical cost and the depreciations assumptions. The replacement cost is based on the present current unit rates, and will be updated annually.

**Table 5 Current Replacement Cost of Core Infrastructures** 

| Asset Type                         | Total Length<br>/Quantitiy | Replacement Cost |
|------------------------------------|----------------------------|------------------|
| Roads                              | 439 KM                     | \$598,994,645    |
| Watermains                         | 496 KM                     | \$358,541,104    |
| Sanitary Sewer                     | 336 KM                     | \$304,005,369    |
| Storm Sewer                        | 293 KM                     | \$345,547,560    |
| Forcemains                         | 51 KM                      | \$34,640,902     |
| Pump Stations                      | 57                         | \$52,663,000     |
| Wastewater Treatment<br>Facilities | 2                          | \$99,288,000     |
| Bridges                            | 27                         | \$67,053,899     |
| Total                              |                            | \$1,860,734,480  |

Sum of Current **Sum of TOTAL** Sum of Net Book Accumulated Asset Type **ORIGINAL COST Value 2012** Amortization Roads \$308,771,534.80 \$93,540,289.94 \$215,231,244.86 Roads - Bridges and Culverts \$9,559,800.83 \$4,129,951.02 \$5,429,849.81 \$79,449,543.91 \$32,689,689.63 \$46,759,854.28 Storm - Urban \$56,621,631.94 Wastewater Collection \$21,990,891.48 \$34,630,740.46 \$29,786,864.85 \$39,757,466.49 Wastewater Treatment \$69,544,331.34 Water Distribution \$74,124,749.03 \$29,584,073.39 \$44,540,675.64 \$598,071,591.85 \$211,721,760.30 \$386,349,831.55 Total:

**Table 6 Financial Valuation of City's Core Infrastructures** 

# 3.2 Methodology

#### 3.2.1 Data Collection and Data Management

The City recognizes that data collection and data management is one of the most critical aspects of the Asset Management Planning Process. Accuracy, reliability and consistency of the data are extremely important in developing a sound Asset Management Plan.

As a result of the initial inventory of linear assets and identification of capital needs by Dillon Consulting Limited in 2005, the City initiated several data collection programs and continues to refine data flow protocols. Most of the City's infrastructure data is stored in a GIS Geodatabase.

#### 3.2.2 Network Segmentation

Network segmentation and establishment of a spatial relationship among assets is a critical step in the asset management analysis. Separate unique identifiers were assigned to each unique section of the linear infrastructure; each block of the road were segmented from intersection to intersection and were assigned unique identifiers; watermain network segments were assigned unique identifiers established based on location of main line valves, hydrant laterals and connection tees; sewer network segments were assigned unique identifiers established based on location of manholes, main connections and pipe size changes.

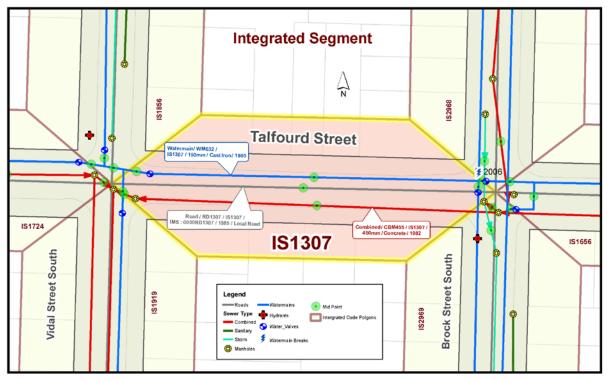



Figure 5 Sample Integrated Segment for Linear Assets

**Table 7 Sample Data Attributed Linear Assets** 

| Road           |                           | Watermain    |                                | Sewer        |                                              |
|----------------|---------------------------|--------------|--------------------------------|--------------|----------------------------------------------|
| Shape          | Polyline                  | Shape        | Polyline                       | Shape        | Polyline                                     |
| OBJECTID       | 1307                      | OBJECTID     | 632                            | OBJECTID     | 179                                          |
| Asset_NO       | 1307                      | Туре         | Watermain                      | Туре         | Combined                                     |
| RD ASSETID     | RD1307                    | Code         | WM                             | Code         | СВМ                                          |
| IntegrCode     | IS1307                    | Asset NO     | 632                            | Asset NO     | 455                                          |
| Block          | 200                       | Asset_ID     | WM632                          | Asset_ID     | CBM455                                       |
| SubBlkArea     | A                         | IntegrCode   | IS1307                         | IntegrCode   | IS1307                                       |
| STREETNAME     | Talfourd Street           | Block        | 200                            | Block        | 200                                          |
| FromStreet     | Brock Street South        | SubBlkArea   | A                              | SubBlkArea   | A                                            |
| ToStreet       | Vidal Street South        | Street       | Talfourd Street                | Street       | Talfourd Street                              |
| JURISDICTN     | City of Sarnia            | FromStreet   | Brock Street South             | FromStreet   | Brock Street South                           |
| MUN_LEFT       | Sarnia                    | ToStreet     | Vidal Street South             | ToStreet     | Vidal Street South                           |
| MUN_RIGHT      | Sarnia                    | Owner        | Sarnia                         | Owner        | Sarnia                                       |
| LEFTFROM       | 168                       | Mun_Area     | Urban                          | Mun_Area     | Urban                                        |
| LEFTTO         | 190                       | Material     | Cast Iron                      | Sewer_Area   | Devine Street                                |
| RIGHTFROM      | 167                       | Diam_m       | 150                            | Material     | Asbestos Cement                              |
| RIGHTTO        | 189                       | DiammLabel   | 150mm                          | Diam_m       | 450                                          |
| STREET_LBL     | Talfourd St               | Diam_Imper   | 6                              | DiammLabel   | 450mm                                        |
| BASE_NAME      | Talfourd                  | DiamImpLab   | 6"                             | Diam_Imper   | 18                                           |
| STTYPE         | Street                    | Depth        | 1.5                            | DiamImpLab   | 18"                                          |
| SUFFIX_TYP     | St                        | INST_YEAR    | 1900                           | UpStreamIn   | 179.71                                       |
| SUB_AREA       | Urban                     | Asset_Date   | 07/01/1900                     | DownStream   | 179.09                                       |
| DIRECTION      | ВОТН                      | GENCOMMENT   | Operation Staff / Age of bldgs | InstYear     | 1982                                         |
| Class_Type     | Local Road                | Status       |                                | Asset_Date   | 07/01/1982                                   |
| NBRLANES       | 2                         | Edit_Date    | 27/01/2012                     | GenComment   | Material source= Assumed by Project Team.    |
| SPEED_ZONE     | 50                        | Edit_By      | RJ                             |              | Installation Year source= As-built drawings. |
| PAVEMTYEAR     | 1985                      | Edit_Notes   |                                |              | Condition Index source= Old CCTV inspection. |
| PAVSTATUS      | Paved Surface             | NoWMBreaks   | 0                              | Status       | Last Inspected on 01/01/2000                 |
| LENGTH         | 114.269195                | RD_AssetID   | RD1307                         | CCTVStrucl   | 0.7                                          |
| PAVEMENTWI     | 10.8                      | Shape_Length | 97.795177                      | InspecLen    | 111.06                                       |
| SURFACE        | 1234.107311               |              |                                | InspecDate   | 01/01/2000                                   |
| GENCOMMENT     | Width source= RIMS.       |              |                                | Edit_Date    | 19/06/2013                                   |
|                | Condition Index source=   |              |                                | Edit_By      | RJ                                           |
|                | Based on Condition Index. |              |                                | Edit_Notes   |                                              |
| UPDATED        | 07/05/2008                |              |                                | RD_AssetID   | RD1307                                       |
| UPDATEDBY      | RJ                        |              |                                | Shape_Length | 108.174001                                   |
| IMS Section NO | 0000RD1307                |              |                                |              |                                              |
| Shape Length   | 114.269195                |              |                                |              |                                              |

An Integrated Segment (IS) ID was then created using the road segments. Using GIS, a buffered polygon data layer was created from intersection to intersection. Also a mid-point dataset was created for each of the water and sewer segments and was spatially assigned the 'IS' ID from the polygons. These datasets were later joined back to original linear segments.

For a given road section there may be multiple segments of watermain, sanitary or storm sewers. The integrated ID's allow different asset types within a close proximity to be compared and are essential in the data collection process. The overall goal is to have all of the City's linear assets assigned with a unique integrated code.

#### 3.2.3 Condition Assessment and Analysis

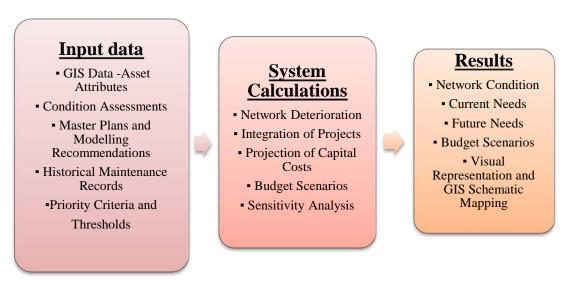
IMS Infrastructure Management Services was hired by the City in 2012 to carry out a detailed pavement condition assessment of its entire road network including a road needs study. The IMS Laser Road Surface Tester (RST) was used for this assessment. All of the road data was provided by City staff to IMS from our Geo database. IMS Pavement Management System was used by the consultant to analyse the pavement data and provide information on measured conditions, road classification, construction cost estimates, and construction needs. The analysis also identified critical deficiencies, and provided a list of the roads in order of a priority rating with respect to reconstruction and/or upgrades.

The Sanitary Sewers and Storm Sewers were evaluated using a combination of the actual condition rating of the infrastructure and partly utilizing the system deterioration curves based on age and material wherever actual conditions were unavailable. Once the actual condition assessment of all the infrastructure assets is completed, the plan will be updated to fully reflect actual condition rating rather than using some data based on system deterioration curves.

The City's water network was analysed based on the watermain break data, age, material, known operation and maintenance issues, and capacity issues identified through the water distribution network modelling.

An Integrated Analysis Engine (IAE) was developed using Microsoft Excel, to carryout integrated analysis for all linear infrastructures to obtain the required results, including; Current Needs, Future Needs, Budget Scenarios and Schematic Mapping.

A composite index method was used to determine the condition score of assets. Each asset was assessed based on a condition score from 0 to 100, with a score of 100 representing a perfect condition. The score is based on actual condition data or the use of deterioration curves and localized factors. It is also beneficial to consider the possibility of rehabilitating infrastructure to extend the overall service life based on the available windows of opportunity.


The main purpose of the IAE was to assess the condition, estimate the replacement costs and timeline for all linear assets, and carryout integrated analysis for the linear infrastructure falling within the range of 15 year rehabilitation and reconstruction windows of opportunity.

The IAE processes data automatically and performs a network of calculations. The program was developed with separate input files, analysis files and output files that link to the IAE and GIS.

Input data files included internal GIS databases, Road assessment data from IMS infrastructure Management services, maintenance records, previous assessment studies and master plan recommendations. Analysis files were developed to conduct sensitivity, financial, current need and future need analysis. The Integrated Analysis Engine is setup to automatically update as the Geodatabase in the GIS system is updated.

Results of the program were also exported back to GIS for schematic mapping. The following figure summarizes the IAE system process.

Figure 6 Integrated Analysis Process



The following figure and table represent the general state of the City's linear infrastructure as calculated by the IAE.

80% 70% 60% 50% 40% 30% 20% 10% 0% Critical Excellent Poor Acceptable Road Water Sanitary ■ Storm

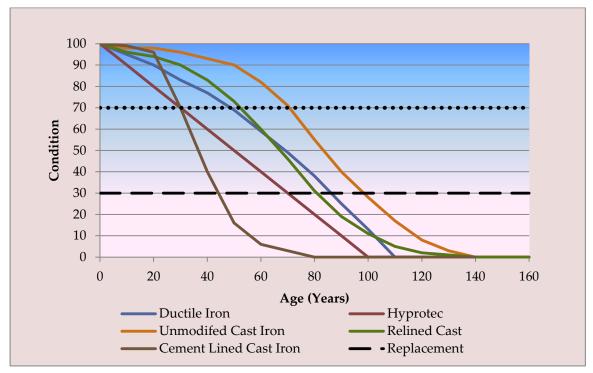

Figure 7 State of Linear Infrastructure

Table 8 Evaluation Criteria for the State of Linear Infrastructures

| Evaluation | Road<br>(Remaining Service Life) | Water/Sanitary/Storm (Remaining Service Life) |
|------------|----------------------------------|-----------------------------------------------|
| Excellent  | ≥ 30 years                       | ≥80 years                                     |
| Acceptable | 30 - 25 years                    | 80 - 45 years                                 |
| Poor       | 25 - 10 years                    | 45 - 30 years                                 |
| Critical   | 10 - 0 years                     | 30 - 0 years                                  |

The deterioration curves were developed for the linear infrastructure materials based on the previous study by Dillon Consulting Limited. These deterioration curves were further modified as more information was collected on the age and type of material of the linear assets. These deterioration curves were used for current condition ratings and the future condition projections. These deterioration curves will be further revised and updated as more data is collected on the condition of the assets.

Various triggers and criteria used for identifying the replacement and reconstruction need; were mostly adopted from the previous study by Dillon Consulting Limited and modified during discussions in various committee meetings to accommodate the specific needs of the individual assets. The following figure is an example of watermain deterioration curves for various pipe materials.



**Figure 8 Watermain Pipe Deterioration Curves** 



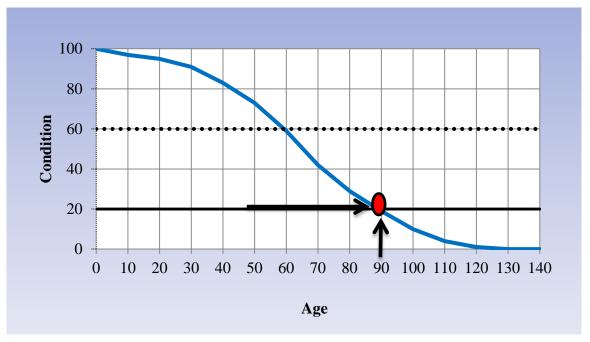



Table 9 Quick Facts about the City's Core Infrastructure Assets

| No. | Description                              | Measurement       | Unit   |
|-----|------------------------------------------|-------------------|--------|
| 1   | Water Distribution System                |                   |        |
|     | Watermains                               | 496               | km     |
|     | Fire Hydrants                            | 2639              | number |
|     | Valves                                   | 3492              | number |
| 2   | Road Network                             |                   |        |
|     | Road                                     | 439               | km     |
|     | Sidewalk                                 | 321               | km     |
| 3   | Stormwater and Waste Water C             | collection System |        |
|     | Sanitary Sewer                           | 312               | km     |
|     | Combined Sewer                           | 24                | km     |
|     | Storm Sewer                              | 293               | km     |
|     | Sanitary and Combined Sewer<br>Manholes  | 4295              | number |
|     | Storm Sewer Manholes                     | 3745              | number |
|     | Catchbasins                              | 7889              | number |
|     | CSO Tank                                 | 1                 | number |
|     | Sanitary Forcemains                      | 50                | km     |
|     | Storm Forcemain                          | 1                 | km     |
|     | Sanitary Pump Stations (In -service)     | 49                | number |
|     | Sanitary Pump Stations (Out of -service) | 4                 | number |
|     | Storm Pump Station                       | 4                 | number |
| 4   | Wastewater Treatment<br>Facilities       | 2                 | number |
| 5   | Stormwater Management<br>Facilities      | 7                 | number |
| 6   | Bridges and Culverts                     | 27                | number |

# 3.3 Water Distribution System

The City of Sarnia Water Distribution System (Sarnia WDS) is an integral part of Lambton Area Water Supply System (LAWSS). The water is supplied to the City's Distribution System from the 'LAWSS Water Treatment Plant' located within City of Sarnia's municipal boundary. Vertical turbine high lift pumps deliver the water from the treatment plant into four transmission mains, which extend through The Village of Point Edward towards Sarnia. The Sarnia WDS is a large Municipal Water Distribution System serving approximately 25,000 customers (approximately 72,000 people).

#### 3.3.1 Inventory

The complete Sarnia WDS consists of a total of approximately 496 kilometres of watermains ranging from 100mm (4") to 600mm (24") in diameter with a total of 2639 hydrants and 3492 main valves. Within the City of Sarnia Water Distribution System, there are 47 kilometres of LAWSS supply watermains integrally connected to the Sarnia WDS at 56 locations. In addition to the above, 36 hydrants are owned by LAWSS and 43 hydrants are privately owned.

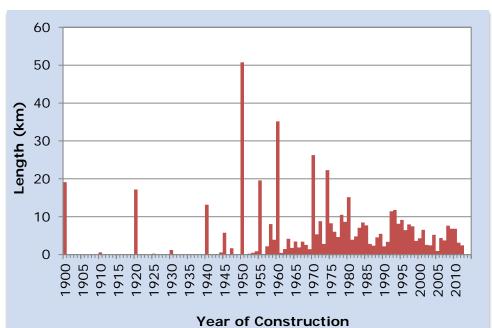



Figure 10 Watermain Installation Years Distribution Hyetograph

The inventory and maping of most of the City's Water Distribution System including location, size, length, type of watermain pipe, fire hydrants, valves, connections, watermain breaks etc., are available in our ESRI's GIS System – Geodatabase.

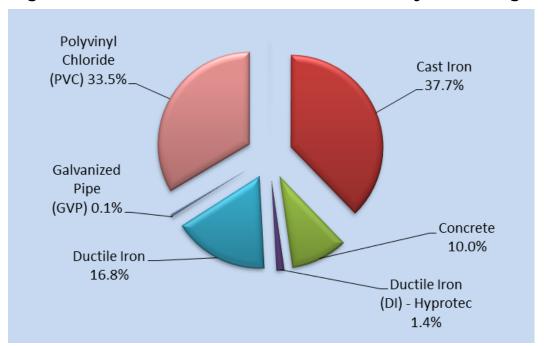



Figure 11 Watermain Material Distribution by Percentage

#### 3.3.2 Condition

The City of Sarnia had a total of 105 watermain breaks in 2011, this equates to 21 breaks per 100 kilometres. This is very high compared to the provincial average. Based on the annual water loss audit carried-out by the City, the watermain breaks have increased consistently in the past few years. This is reflected in the significant reconstruction and rehabilitation needs for the water distribution system.

The following figures compares the results of the water loss audit conducted in 2008, 2009, 2010 and 2011; and watermains age & material distributions. The gross water loss includes accounted and unaccounted water loss, and the net water loss is only unaccountable water losses that could be attributable to meter inaccuracies, leakages water theft, etc.

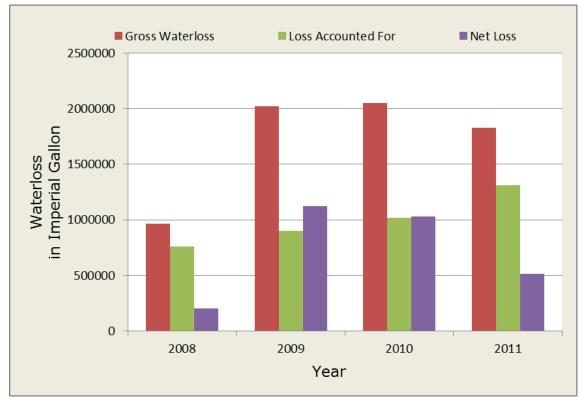
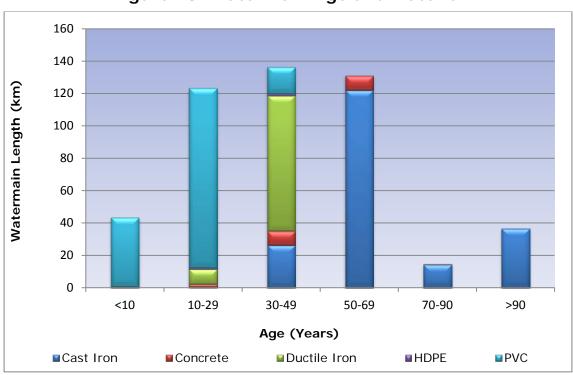




Figure 12 Annual Water Loss from 2008 to 2011





The water network was assessed based on a variety of factors including age, material, watermain breaks, pressure and flow, capacity constraints etc.

**Table 10 Factors for Determining Watermain Condition** 

| Factor                           | Comments                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age and<br>Material              | "Age and Material" is the most significant criterion. As a watermain ages its condition deteriorates by a combination of increased calcium deposits, low flows, low pressure, rusting, and breakage. The type of material significantly impacts the rate of deterioration.                                                             |
| Watermain<br>Breaks per<br>100 m | The number of watermain breaks provides an accurate measure of operational decline. Watermains that have a history of breakage are a significant burden on the operational budget.                                                                                                                                                     |
| Fire Flow                        | Several areas in the City experience very low flows and are an operational and safety concern. Low flows are also directly correlated to poor water quality.                                                                                                                                                                           |
| Pipe<br>Diameter                 | Large pipes are often transmission lines that bring large quantities of water, therefore problems with larger pipes are considered high social and economic risks. Small pipes, less than 150 mm, are also a priority due to low pressure and potential lead services. Lead services need to be removed due to water quality concerns. |

The following figure represents the state of water infrastructure of the City.

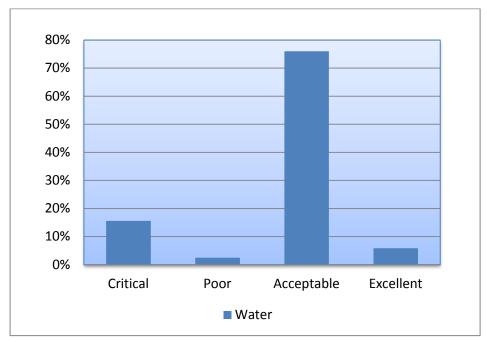



Figure 14 State of Water Infrastructure

#### 3.3.3 System Capacity and Expansion

The Water Distribution System Master Plan and Hydraulic Modelling of the City's Water Distribution System are currently being completed by Stantec Consulting Limited.

The objective of this study is to undertake a detailed hydraulic assessment of the City's Water Distribution System and to develop a hydraulic model for the Distribution System including establishing the pattern of the water movement throughout the City. In addition, the availability of required fire flows at all the points during average day and maximum daily demands; water quality analysis; identifying deficient fire flow areas and areas with water quality concerns in the Distribution System and provides recommendations for improvements.

The Water Distribution System Master Plan will provide direction to the long-term management and operation of water infrastructure. Specifically it will provide input to the City's long-term capital planning by prioritizing water projects, assisting in long term planning, Official Plan Amendments and Zoning By-Law development.

The system capacity constraints identified through the modelling process will be incorporated during the next update of this plan.

#### 3.3.4 Data Flow Verification Policy

The City's Engineering Department (Public Works Division) has an annual valve-turning program and a hydrant flushing and inspection program, which have both been in place since 2010. Staff currently flushes all (2639) hydrants annually, and exercises (turns) on average 300 watermain gate valves annually.

In addition to the above activities, the field location of the hydrants and valves are recorded using hand held Global Positioning System (GPS) devices and information collected is uploaded into the GIS system on a regular bases. A data integrity check and flow protocol are being developed to ensure reliability, consistency and accuracy of the data.

#### 3.3.5 Analysis

The state of the City's Water Distribution System has been analysed based on the watermain breaks data, age, material, size, and available pressure and fire flow issues of the water distribution system. The risk analysis was carried-out based on probability of failure and consequence of the failure. More weightage was assigned to the higher diameter watermains as well as watermains with a higher number of breaks.

Capacity and fire flow issues in the distribution system are separately assessed and incorporated into the above. The above factors were further modified based on known issues and other risks specific to certain sections of the water distribution system.

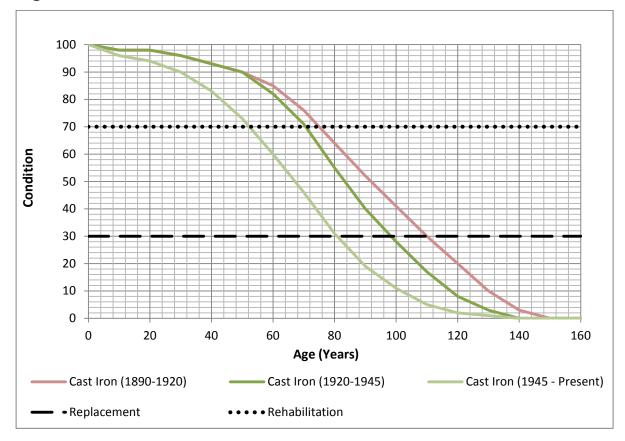



Figure 15 Water Network Deterioration Curves-Modified Cast Iron

Deterioration curves for the water distribution system were modified from the Dillon Study based on more available information on the age and type of material. These deterioration curves were used for the current condition index and future condition projections.

# 3.4 Wastewater Collection Systems

#### 3.4.1 Inventory

The City of Sarnia owns and operates two Waste Water Treatment Facilities, one located in the south end of the City's urban area, the Sarnia Pollution Control Centre on St. Andrew's Street, which services approximately 65,000 people; and a second facility located in the community of Bright's Grove, the Bright's Grove Sewage Lagoons, which services approximately 5000 people.

The wastewater collection system servicing the City's Wastewater Treatment Plant Facility includes approximately 286 kilometres of gravity sanitary sewer, 24 kilometres of combined sewers, 49 sanitary pumping stations and approximately 49 kilometres of sanitary forcemains. The Bright's Grove Wastewater Treatment System is serviced by approximately 26 kilometres of gravity sanitary sewers, 4 sanitary pumping stations and 3.5 kilometres of sanitary forcemains.

The stormwater collection system consists of 293 kilometres of storm sewers, 4 storm pumping stations, and 7 stormwater management facilities.

The inventory and mappings of most of the City's wastewater collection system including location, size, lengths, type of sewer pipe; manholes, service connections, condition etc.; are available in our ESRI GIS System – Geodatabase. This Geodatabase was created based on the previous inventories from the 2005 Dillon Consulting Study and further data collection programs initiatives by the City.

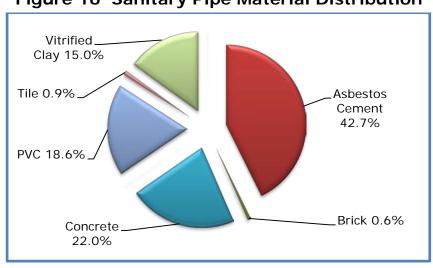
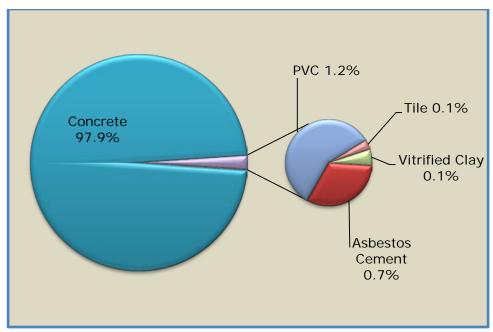




Figure 16 Sanitary Pipe Material Distribution

Figure 17 Combined Sewer Pipe Material Distribution





#### 3.4.2 Condition

#### 3.4.2.1 Sewers

Most of the City's separated sewer systems were built in the 1950's; 1960's and 1970's. A significant portion of the core area of the City is still serviced by an existing combined sewer system. The combined sewers were mostly installed prior to 1900. The distribution of linear infrastructure of the City by age of installation and state of linear wastewater infrastructure is as shown below.

Figure 19 Sanitary and Combined Sewers Installation Age
Distribution

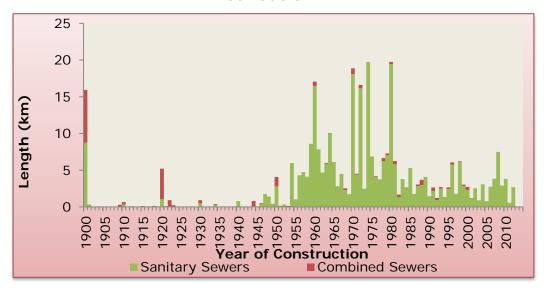
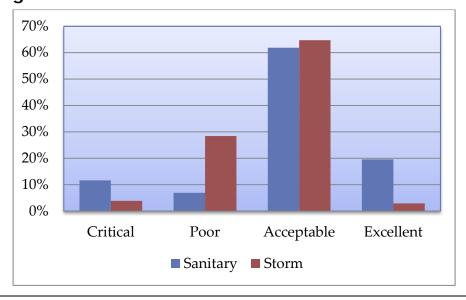




Figure 20 State of Linear Wastewater Infrastructure



Combined sewer overflows to the St. Clair River and basement flooding have been the long standing major concerns of the City of Sarnia. The City has undertaken major sewer separation projects in the past five years with the help of funding from senior level government, thereby achieving reduction in combined sewer overflows to the St. Clair River and mitigation of basement flooding in the core area of the City. This has also resulted in improved water quality in the St. Clair River.

Sewer condition assessment is one of the major challenges for the City due to the uncertainty and extent of sewer cleaning required. Hence, the cost associated with this is high and uncertain. Therefore, the sewer condition assessment work is ongoing in phases and will be completed over the next three to four years.

In this Plan, the condition of the existing sewer network has been mostly analysed based on the age and material and partly based on sample condition assessment of the sewer network done previously by Dillon Consulting. The plan will be updated once more sewer condition assessment data is collected.

### 3.4.2.2 Pumping Stations

The pumping station assessment for the City was completed by R. V. Anderson Associates in 2009.

The following table shows the weighted average service life of different components of a pump station based on the above report. The condition analysis of all the pump station has been calculated using the declining straight-line method based on this weighted average service life and any major upgrades done to the pump station.

**Table 11 Wastewater Pump Stations Components Service Life.** 

| Discipline    | % Cost of Facility | Wastewater Pumping Stations<br>Expected Service Life (yrs) |
|---------------|--------------------|------------------------------------------------------------|
| Architectural | 10                 | 30                                                         |
| Electrical    | 15                 | 25                                                         |
| Life Safety   | 5                  | 50                                                         |
| Mechanical    | 10                 | 30                                                         |
| Process       | 25                 | 40                                                         |
| Site Elements | 5                  | 50                                                         |
| Structural    | 30                 | 100                                                        |
|               | 100                | 55                                                         |

The capacity score of the pump station was calculated based on the actual design capacity versus the modelled flow received by the pump station. The compound score was calculated as 80% condition and 20% capacity. The risk score was assigned proportional to the actual capacity of the pump station and the overall score was lowered by a maximum of 25%.

The overall score after override has been adjusted for three pump stations with known operational and developmental issues within the City.

The priority list of pump stations with capacity, condition and risk score is provided in the following table:

**Table 12 Wastewater Pump Station Capacity and Condition Assessment** 

| Station<br>ID | Pump Station               | Condition<br>Score | Capacity<br>Score | Compound<br>Score | Normalized<br>Risk Score<br>(75-100) | Overall<br>Score | Known Operational and Development Issues | Overall<br>Score<br>After<br>Override |
|---------------|----------------------------|--------------------|-------------------|-------------------|--------------------------------------|------------------|------------------------------------------|---------------------------------------|
| 33            | CNR Tracks at Bedford      | 34                 | 29                | 33                | 75.0                                 | 25               | Yes                                      | 0                                     |
| 41            | Green Street               | 67                 | 0                 | 54                | 81.5                                 | 44               | Yes                                      | 0                                     |
| 35            | Murphy Road at 402         | 34                 | 66                | 41                | 75.0                                 | 30               | Yes                                      | 0                                     |
| 18            | Giffel Road                | 11                 | N/A               | 11                | 100.0                                | 11               |                                          | 11                                    |
| 6             | East St at Maple           | 12                 | N/A               | 12                | 100.0                                | 12               |                                          | 12                                    |
| 1             | Holland Street             | 11                 | 35                | 15                | 90.4                                 | 14               |                                          | 14                                    |
| 2             | Briarfield                 | 14                 | N/A               | 14                | 100.0                                | 14               |                                          | 14                                    |
| 13            | McCaw                      | 18                 | 25                | 19                | 86.6                                 | 17               |                                          | 17                                    |
| 14            | Rosedale                   | 14                 | 69                | 25                | 82.9                                 | 21               |                                          | 21                                    |
| 8             | Errol Road                 | 23                 | N/A               | 23                | 100.0                                | 23               |                                          | 23                                    |
| 9             | Exmouth West of Indian     | 32                 | 21                | 30                | 84.2                                 | 25               |                                          | 25                                    |
| 17            | Mayfair                    | 29                 | 46                | 32                | 80.8                                 | 26               |                                          | 26                                    |
| 16            | Talfourd Street            | 34                 | 48                | 37                | 75.0                                 | 28               |                                          | 28                                    |
| 5             | East St at Huey's          | 29                 | N/A               | 29                | 100.0                                | 29               |                                          | 29                                    |
| 10            | Forsyth                    | 32                 | 48                | 36                | 95.2                                 | 34               |                                          | 34                                    |
| 15            | Scott Road                 | 25                 | 81                | 36                | 95.7                                 | 35               |                                          | 35                                    |
| 32            | Exmouth St. (Lambton Mall) | 34                 | 82                | 44                | 81.6                                 | 36               |                                          | 36                                    |
| 12            | Lecaron                    | 53                 | 23                | 47                | 77.4                                 | 36               |                                          | 36                                    |
| 3             | Clifford                   | 27                 | 94                | 40                | 93.0                                 | 37               |                                          | 37                                    |
| 28            | 1801 London @ Blackwell    | 34                 | 77                | 43                | 91.7                                 | 39               |                                          | 39                                    |
| 44            | Chippewa Park              | 40                 | N/A               | 40                | 100.0                                | 40               |                                          | 40                                    |
| 29            | London Line at Briarwood   | 34                 | 89                | 45                | 88.0                                 | 40               |                                          | 40                                    |
| 37            | Cathcart at Rutherglen     | 42                 | N/A               | 42                | 100.0                                | 42               |                                          | 42                                    |
| 7             | Elrick at Vye              | 53                 | 43                | 51                | 82.4                                 | 42               |                                          | 42                                    |
| 30            | Blackwell @ Sim's          | 34                 | 72                | 42                | 100.0                                | 42               |                                          | 42                                    |
| 24            | River Road                 | 45                 | N/A               | 45                | 100.0                                | 45               |                                          | 45                                    |
| 20            | Tashmoo Ave (North)        | 49                 | N/A               | 49                | 100.0                                | 49               |                                          | 49                                    |
| 23            | Sandy Lane                 | 49                 | N/A               | 49                | 100.0                                | 49               |                                          | 49                                    |
| 31            | Airport Road North of 402  | 43                 | 92                | 53                | 96.9                                 | 51               |                                          | 51                                    |
| 36            | 1642 Murphy Road           | 67                 | 82                | 70                | 75.0                                 | 53               |                                          | 53                                    |
| 38            | Penhuron Lane (Hamilton)   | 67                 | 12                | 56                | 96.4                                 | 54               |                                          | 54                                    |
| 25            | 161 Nelson Street          | 54                 | N/A               | 54                | 100.0                                | 54               |                                          | 54                                    |
|               |                            | 71                 |                   |                   |                                      |                  |                                          |                                       |
| 34            | Plank Road at Indian Road  |                    | 98                | 76                | 75.0                                 | 57               |                                          | 57                                    |
| 46            | Rapids Parkway             | 69                 | 78                | 71                | 81.5                                 | 58               |                                          | 58                                    |
| 21            | Plain Lane                 | 58                 | N/A               | 58                | 100.0                                | 58               |                                          | 58                                    |
| 22            | Berkshire Road             | 58                 | N/A               | 58                | 100.0                                | 58               |                                          | 58                                    |
| 26            | 1350 Plank                 | 67                 | 51                | 64                | 94.3                                 | 60               |                                          | 60                                    |
| 27            | 1569 London Line( Lou's)   | 85                 | 66                | 81                | 76.6                                 | 62               |                                          | 62                                    |
| 11            | Lasalle                    | 67                 | 62                | 66                | 98.9                                 | 65               |                                          | 65                                    |
| 39            | Kaymar                     | 67                 | N/A               | 67                | 100.0                                | 67               |                                          | 67                                    |
| 40            | Huronview (Lakeshore)      | 67                 | N/A               | 67                | 100.0                                | 67               |                                          | 67                                    |
| 47            | Devine Street              | 96                 | N/A               | 96                | 75.0                                 | 72               |                                          | 72                                    |
| 4             | ARI                        | 73                 | N/A               | 73                | 100.0                                | 73               |                                          | 73                                    |
| 43            | 1264 Tashmoo (South)       | 73                 | N/A               | 73                | 100.0                                | 73               |                                          | 73                                    |
| 50            | Michigan Avenue            | 80                 | 80                | 80                | 92.7                                 | 74               |                                          | 74                                    |
| 51            | Heritage Park              | 80                 | 79                | 80                | 95.2                                 | 76               |                                          | 76                                    |
| 45            | Augusta Drive              | 76                 | N/A               | 76                | 100.0                                | 76               |                                          | 76                                    |
| 49            | 5960 Blackwell Side Road   | 76                 | N/A               | 76                | 100.0                                | 76               |                                          | 76                                    |
| 53            | London Rd Industrial Park  | 85                 | 96                | 88                | 88.3                                 | 77               |                                          | 77                                    |
| 52            | Stone Hedge Park           | 84                 | N/A               | 84                | 100.0                                | 84               |                                          | 84                                    |

### 3.4.2.3 Wastewater Treatment Facilities

The condition scores for various components of the Water Pollution Control Centre have been calculated based on average age of the components identified in the following figure.

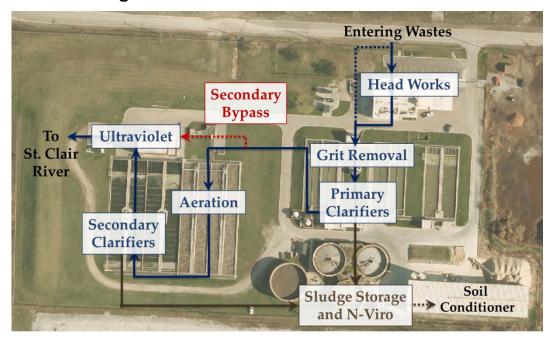


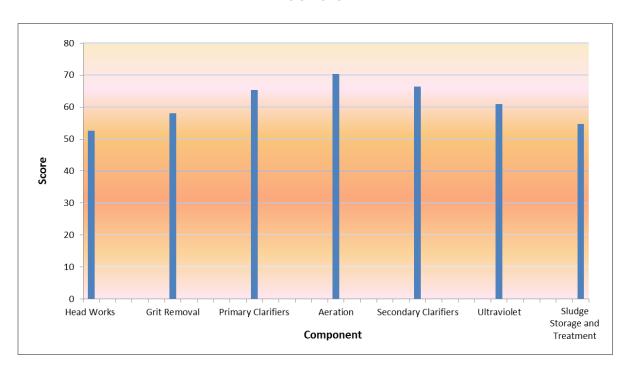

Figure 21 Water Pollution Control Centre

Every component of the Water Pollution Control Centre was divided into three major categories; Process, Structural and Equipment. A service life of 25 years for Process and Equipment, and a service life of 100 years for Structural were assumed. The condition score will be updated once the actual condition assessment of the plant is carried-out in the future.

The original plant built in 1959 used an anaerobic process and had only primary treatment capabilities. The plant was upgraded in 2000, to add secondary treatment and changed to an aerobic process.

The Bright's Grove treatment facility consists of the lagoon system and has been identified as top need based of capacity constraints, and legislative requirement. More description on this facility is included under 'System Capacity and Expansion' section.

**Figure 22 Water Pollution Control Centre Upgrades** 


1959

- Head works
- 4 Primary Clarifiers
- Sludge Holding Tanks Gallery
- Lagoons

# 2000 Update

- 2 Primary Clarifiers
- 4 Secondary Clarifiers
- ❖ Aeration Tanks
- Ultraviolet Disinfection
- ❖ N-Viro System

Figure 23 Average Condition Score of Water Pollution Control Centre



**Table 13 Water Pollution Control Centre Condition Assessment** 

| Section                  | )                | Category   | Year built | Age | Condition Score |
|--------------------------|------------------|------------|------------|-----|-----------------|
| (0                       |                  | Process    | 2004       | 9   | 64              |
| Head<br>Works            |                  | Structural | 1959       | 54  | 46              |
| ₹ %                      |                  | Equipment  | 2000       | 13  | 48              |
|                          |                  | Average    |            |     | 53              |
| <u> </u>                 |                  | Process    | 2008       | 5   | 80              |
| Grit                     |                  | Structural | 1959       | 54  | 46              |
| Grit<br>Remova           |                  | Equipment  | 2000       | 13  | 48              |
| <u>~</u>                 |                  | Average    |            |     | 58              |
| - s                      |                  | Process    | 2005       | 8   | 68              |
| nar<br>ifie              |                  | Structural | 1973       | 40  | 60              |
| Primary<br>Clarifiers    |                  | Equipment  | 2005       | 8   | 68              |
| <u> </u>                 |                  | Average    |            |     | 65              |
| <u>_</u>                 |                  | Process    | 2005       | 8   | 68              |
| tio                      |                  | Structural | 2000       | 13  | 87              |
| Aeration                 |                  | Equipment  | 2002       | 11  | 56              |
| ⋖                        |                  | Average    |            |     | 70              |
| rs S                     |                  | Process    | 2004       | 9   | 64              |
| nda<br>ifie              |                  | Structural | 2000       | 13  | 87              |
| Secondary<br>Clarifiers  |                  | Equipment  | 2000       | 13  | 48              |
|                          |                  | Average    |            |     | 66              |
| Ultraviolet              |                  | Process    | 2000       | 13  | 48              |
| , S                      |                  | Structural | 2000       | 13  | 87              |
| tra                      |                  | Equipment  | 2000       | 13  | 48              |
| <del>_</del> 5           |                  | Average    |            |     | 61              |
| a, u                     | nt               | Process    | 2002       | 11  | 56              |
| ludge<br>orage<br>and    | me               | Structural | 1973       | 40  | 60              |
| Sludge<br>Storage<br>and | <b>Freatment</b> | Equipment  | 2000       | 13  | 48              |
|                          | <u> </u>         | Average    |            |     | 55              |

### 3.4.3 System Capacity and Expansion

In 2009, the City undertook an assessment of the reserve capacity of each wastewater treatment facility. The resulting report (City of Sarnia – Wastewater Treatment Systems Reserve Capacity Calculations 2009) concluded that limited uncommitted reserve capacity existed at both facilities. The report recommended that the City undertake a detailed hydraulic assessment of the wastewater collection systems.

Hydraulic modelling of the City's wastewater collection system has also been recently completed by Stantec Consulting Limited. The objectives of this study were as follows:

- i. To undertake a detailed hydraulic assessment of the City's wastewater collection system; and
- ii. To develop a hydraulic model for the collection system including a review of the wastewater collection system and identify trunk sewer service areas; and
- iii. To initiate a sanitary flow monitoring program to permit a more detailed determination of actual flows in the trunk sewer systems under low and peak flow events; and
- iv. To identify hydraulically deficient trunk sewers as well as identifying areas of high Infiltration/Inflow (I/I) including recommendations for improvements.

Hydraulic modelling of the wastewater collection system included pumping stations, forcemains, and analysis to identify trunk sewer systems that were hydraulically deficient and an assessment of the impact of future development on the hydraulic capacity of existing infrastructure.

The Wastewater Collection System Master Plan was developed by Stantec to provide direction to the long term management and operation of wastewater infrastructure specific to providing input to the City's long term capital planning by prioritizing water projects, assisting in long term planning, Official Plan and Zoning By Law Amendments.

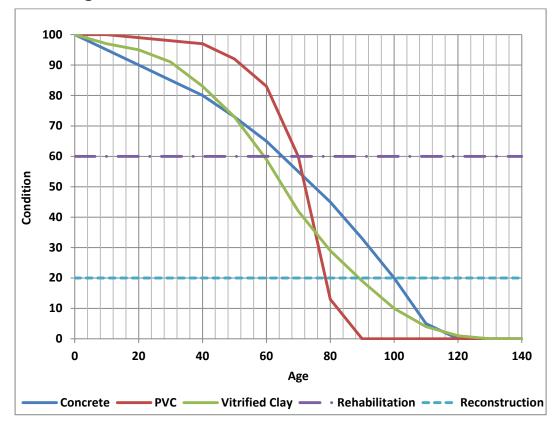
In 2010, a Ministry of Environment (MOE) report indicated that the capacity of the Bright's Grove treatment facility is approaching 85% of its designed capacity. The facility also experiences operational issues, as the current treatment system does not allow for the discharge of flows during the winter period. The MOE required the City to develop a plan to expand its capacity (current rated capacity is 2,045m3/d). As recommended by

the Master Plan, further environmental study was undertaken for the Bright's Grove Sewage Treatment Facility by Stantec to evaluate the expansion upgrades and options available to meet future demand.

The top two identified projects for expansion from the above study are the Bright's Grove Sewage Treatment Facility and the Bedford Pump Station.

The system capacity constraints identified through the Wastewater Collection System Master Plan have been incorporated during the development of this Asset Management Plan.

### 3.4.4 Data flow verification policy


The City's Engineering Department (Public Works Division) has a regular sewer inspection and flushing program. The sewer network data is being collected on a regular basis by operations staff using hand held GPS devices and the database is being updated using established protocols.

The flushing of the sewer network is being done by our operations staff and equipment; and Consultants are hired to undertake CCTV and condition assessment and provide an overall condition rating of the pipe network based on Pipeline Assessment Certification program (PACP) coding system. The sewer condition data is being collected in phases over the next 3 to 4 years.

### 3.4.5 Analysis

The state of the City's wastewater collection system has been analysed based on age, material, size, receiving water quality and basement flooding, available CCTV ratings from previous studies, known operational and capacity issues based on the modelling of the collection system completed by Stantec.

Deterioration curves for the wastewater collection system were also modified from the Dillon Study based on more available information on the age and type of material. These deterioration curves were used for the current condition rehabilitation window of opportunity and future condition projections.



**Figure 24 Sewer Network Deterioration Curves** 

### 3.5 Road network

### 3.5.1 Inventory, Condition and Analysis

Infrastructure Management Services (IMS) carried out a detailed pavement condition assessment and road need analysis using IMS pavement management program. The analysis provided information on measured conditions; road classification; construction cost estimates; construction needs; identified critical deficiencies; and provided a list of the roads in order of priority rating with respect to reconstruction and/or upgrades.

Traditionally collected road need assessments within the City were done visually in terms of current need in a very generalized and subjective manner. The approach adopted by IMS Infrastructure for the pavement condition assessment was fully automated. The detailed distress and roughness survey was using Ministry of Transportation and Ontario Good Road Association Methodology.

The state of road infrastructure is shown in the following figure.

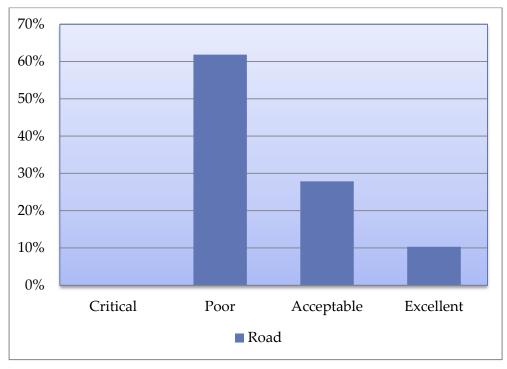
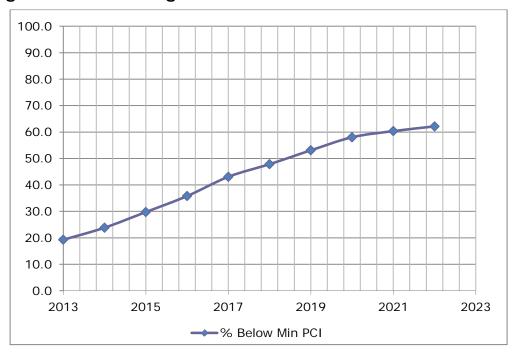




Figure 25 State of Road Network





The surface distress and roughness data collected by IMS is aggregated to the sectional level for each pavement management section in the City's inventory database in the form of a distress manifestation index (DMI) and Riding Comfort Index (RCI). These indices were then combined into overall Pavement Condition Index or PCI which provides an overall condition of each section and forms the basis of required rehabilitation need.

### 3.5.2 System Expansion

The City is currently in the process of carrying-out its Transportation Master Plan Study. The future expansion needs will be assessed as part of this study based on the future growth and population projection. The outputs and recommendations from this plan will also be incorporated into future iterations of this Asset Management Plan.

### 3.5.3 Data flow verification policy

The City plans to carry out the road assessment and need study for its entire road network on a five-year interval. This plan will be updated to reflect the conditions and need of the road network accordingly.

Some of the results of the pavement assessment are included in this plan as annexures.

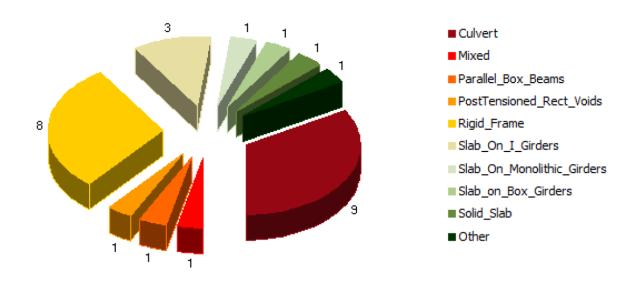
## 3.6 Bridges and Culverts

The City hired Engineered Management System in 2012 to carry out assessment of all its Bridges and Culverts in accordance with the Ontario Structure Inspection Manual. The Bridge and Culvert assessment are done by the City every two years as mandated by Public Transportation and Highway Improvement Act. Engineered Management System also prepared the 20 years Capital Improvement Plan for all the bridges and culverts using Bridge Management System.

The study report contains a summary of findings, recommendations and prioritization of rehabilitative maintenance for the bridge and culvert structures in The City of Sarnia. This report summarizes findings and explains in detail how the recommended programs have been determined. The summary of the findings of the assessment are attached with this plan as annexures.

The following table and chart summarize key aspects of the City of Sarnia's Bridge and Culvert inventory.

**Table 14 Summary of Bridge Inspections** 


| Structure<br>ID | MTO Site<br>No. | Bridge Name                             | Road Name          | Stucture Location                              | Condition<br>Index<br>(BCI) | Inpection Date |
|-----------------|-----------------|-----------------------------------------|--------------------|------------------------------------------------|-----------------------------|----------------|
| 000260          | 14-0000         | Telfer Road                             | Telfer Road        | 0.38km South of<br>Confederation Line          | 0                           | 08/27/2012     |
| 000270          | 14-0000         | Waterworks Road                         | Waterworks Road    | Waterworks Road 0.63km North of Churchill Line |                             | 08/23/2013     |
| 000280          | 14-0000         | Brigden Road                            | Brigden Road       | 1.06km South of Churchill<br>Line              | 0                           | 08/27/2012     |
| 000310          |                 | Old Lakeshore Road<br>Over Cull Drain   | Old Lakeshore Road | 0.67 km East of Huron<br>Shores Drive          | 0                           | 09/05/2012     |
| 000200          | 14-0000         | Blackwell Sideroad                      | Blackwell Sideroad | 0.69km North of Michigan<br>Line               | 27                          | 08/27/2012     |
| 000320          |                 | Vidal Street Walkway                    | Vidal Street       | 0.25 km West of Donahue<br>Bridge              | 39.6                        | 08/24/2012     |
| 000160-3-3      | 14S-76          | Donohue Bridge<br>(North Structure)     | Vidal Street       | 0.35km South of Confederation Street           | 43.3                        | 08/23/2012     |
| 000230          | 14-0000         | Confederation Line                      | Confederation Line | 0.2km West of Blackwell<br>Sideroad            | 47.6                        | 08/22/2012     |
| 000160-1-3      | 14S-76          | Donohue Bridge<br>(South Structure)     | Vidal Street       | 0.35km South of Confederation Street           | 59.3                        | 08/23/2012     |
| 000090          | 14S-84          | Perch Creek Bridge                      | Telfer Sideroad    | 0.10km North of Churchill<br>Road              | 60.9                        | 08/24/2012     |
| 000160-2-3      | 14S-76          | Donohue Bridge<br>(Centre Structure)    | Vidal Street       | 0.35km South of Confederation Street           | 72.5                        | 08/23/2012     |
| 000060          | 14S-41          | Perch Creek Bridge                      | Blackwell Sideroad | 0.20km South of Michigan Avenue                | 76.7                        | 08/24/2012     |
| 000070          | 14S-373         | Jackson Road Bridge                     | Jackson Road       | 0.60km East of Telfer<br>Sideroad              | 79.3                        | 08/22/2012     |
| 000150          | 14S-343         | Kenny Bridge                            | Vidal Street       | 0.1km North of Kenny<br>Street                 | 79.6                        | 08/24/2012     |
| 000040          | 14S-374         | Michigan Avenue Bridge                  | Michigan Avenue    | 0.60km East of Telfer<br>Sideroad              | 79.8                        | 08/22/2012     |
| 000300          |                 | McGregor Sideroad<br>Over Cole Drain    | McGregor Sideroad  | 0.01 km South of Plank<br>Road                 | 82.9                        | 08/27/2012     |
| 000250          | 14-0000         | Confederation Line<br>Over Waddel Creek | Confederation Line | 0.27km West of Telfer<br>Road                  | 85.1                        | 08/23/2012     |
| 000050          | 14S-43          | Perch Creek Bridge                      | Michigan Avenue    | 0.20km East of Blackweel<br>Sideroad           | 90.8                        | 08/22/2012     |
| 000180          | 14S-381         | CSX Overpass                            | River Road         | 0.6km West of Churchill<br>Road                | 91.5                        | 08/24/2012     |
| 000030          | 14S-51          | Cow Creek Bridge                        | Michigan Avenue    | 0.3km West of Mandaumin<br>Avenue              | 92.1                        | 08/22/2012     |
| 000020          | 14S-46          | Perch Creek Bridge                      | Telfer Sideroad    | 0.20km South of Blackwell<br>Road              | 92.4                        | 08/22/2012     |
| 000100          | 14S-81          | Scott Road Bridge                       | Scott Road         | 0.18 km North of LaSalle<br>Road               | 96.3                        | 08/24/2012     |
| 000010          | 14S-49          | Cow Creek Bridge                        | Old Lakeshore Road | 0.80km West of<br>Maudaumin Sideroad           | 97.5                        | 08/22/2012     |
| 000240          | 14-0000         | Confederation Line<br>Over Perch Creek  | Confederation Line | 1km East of Blackwell<br>Sideroad              | 98.7                        | 08/23/2012     |
| 000110          | 14S-556         | Scott Road Culvert                      | Scott Road         | 0.50km South of St.<br>Andrew                  | 100                         | 08/27/2012     |
| 000190          | 14S-0000        | Michigan Road                           | Michigan Road      | 0.62 km East of Blackwell<br>Sideroad          | 100                         | 08/27/2012     |
| 000210          | 14-0000         | Finch Drive                             | Finch Drive        | 0.19km South of London<br>Road                 | 100                         | 08/27/2012     |
| 000220          | 14-0000         | Wellington Street                       | Wellington Street  | 0.5km West of Finch Drive                      | 100                         | 08/27/2012     |
| 000290          | 14-0000         | Marshall Line                           | Marshall Line      | 0.25km West of Brigden<br>Road                 | 100                         | 08/27/2012     |

**Table 15 Bridge and Culvert Capital Needs** 

| Structure Type / Usage     | Count | Replacement \$ | Identified Rehab.<br>Needs \$ |
|----------------------------|-------|----------------|-------------------------------|
| Vehicular                  | 25    | \$64,078,457   | \$16,843,613                  |
| Solid Slab                 | 1     | \$512,572      | \$572,257                     |
| Rigid Frame                | 8     | \$13,534,145   | \$1,870,775                   |
| Slab on I Girders          | 3     | \$5,415,968    | \$793,549                     |
| Slab on Monolithic Girders | 1     | \$1,192,238    | \$466,749                     |
| Parallel Box Beams         | 1     | \$2,609,060    | \$607,242                     |
| Post-Tensioned Voided      | 1     | \$7,712,902    | \$652,518                     |
| Mixed                      | 1     | \$25,862,056   | \$10,526,911                  |
| R/C Culvert                | 4     | \$4,903,654    | \$95,089                      |
| CSP Culvert                | 5     | \$2,335,862    | \$1,258,523                   |
|                            |       |                |                               |
| Pedestrian                 | 2     | \$2,975,442    | <b>\$3,016,358</b>            |
| Slab on Box Girders        | 1     | \$1,092,001    | \$659,271                     |
| Truss                      | 1     | \$1,883,441    | \$2,357,087                   |
|                            |       |                |                               |
| Overall                    | 27    | \$67,053,899   | \$19,859,971                  |

Figure 27 Bridge and Culvert Structure Distribution

Distribution Based on Structure Type



# 4. Desired Levels of Service

The expected levels of service in terms of various criteria and thresholds for the linear infrastructures were determined in the initial inventory assessment and identification of Capital Needs for the Linear Assets by Dillon Consulting Limited in 2006 and modified afterwards during asset management committee meetings. For the purpose of this plan, the following desired service level criteria for replacement and rehabilitation are being proposed.

Service levels continue to be discussed at the steering committee level and the plan will again be updated in the future to incorporate any changes.

Time of Road Road Road Water Sanitary Storm **Improvement** (Arterial) (Collector) (Local) Rehabilitation ≤55 ≤50 ≤45 ≤70 ≤60 ≤60 Replacement ≤45 ≤35 ≤30 ≤30 ≤20 ≤20

Table 16 Linear Infrastructure Service Level Thresholds

The City aims at achieve major reductions in combined sewer overflows and basement flooding. The City also aims to provide adequate fire flows and pressure in the entire water distribution system.

The City has achieved significant progress in mitigating the combined sewer overflows and the basement flooding by carrying out its sewer separation programs. This has also resulted in improved receiving water quality in the St. Clair River.

Over the next 10 years, the City plans to significantly reduce the watermains break levels from the current level of over 21 breaks per 100 kilometres.

# 5. Asset Management Strategy

# 5.1 Organization Overview of Asset Management Strategy

At an organization level, the City of Sarnia's asset management process for the core infrastructure services involves interactions among various departments of the City. The interactions and decision making is shown in the flow chart below. Information related to maintenance, operation and repair activities, (through maintenance management system), condition assessment data, future growth, subdivision and site plan development, (through modelling and master planning process) flow into the asset management system. The output from the asset management plan will serve as a framework for the City's capital project planning; capital project financial planning; reconstruction and rehabilitation strategies; and maintenance, operation and repair activities.

Future growth & New land Subdivision /Site Maintenance and development Plans/ Development operation Planning and Planning & Economic Public works Engineering Development GIS, Data collection, Asset Inventory condition assessment, Asset management and Financial Strategies. Asset Management **Engineering Finance** Tangible Capital Asset Rehabilitation (E.g. Roads mill & overlay, Capital Plan sewer lining) Budget Reconstruction and Replacement

Figure 28 City of Sarnia Asset Management Strategy Flowchart

The City's maintenance management system is still being implemented and once implemented will be fully integrated with the asset management process. The City is also in the process of carrying out water distribution system and transportation system master planning studies.

# 5.2 Integrated Approach for Linear Infrastructures

The City of Sarnia owns, operates and maintains all major core infrastructures within the right of way to make the most cost-effective decisions for the reconstruction and rehabilitation of infrastructure assets it is extremely beneficial to use an integrated approach.

An integrated approach involves simultaneously analyzing assets that are located in a close proximity to each other, such as a road and the buried infrastructure beneath it (i.e. watermains, sanitary sewers and storm sewers).



Figure 29 Integrated Approach for Linear Infrastructures

Infrastructures requiring attention can be postponed or accelerated in order to coordinate the timing with other improvements. Capital projects are the most economical when the road and buried infrastructures are reconstructed at the same time, essentially reducing road reconstruction costs.

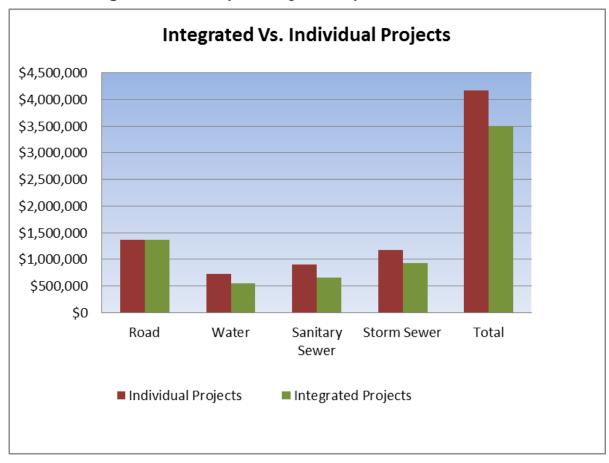



Figure 30 Sample Project Replacement Cost

### 5.3 Planned Actions

### 5.3.1 Non-infrastructure Solutions

Through hydraulic modelling of the City's wastewater collection system, recently completed by Stantec, it has been established that the City has major storm runoff inflow and infiltration (I/I) issues with its wastewater collection system. During a rain event, the wet weather flows are significantly high in the wastewater collection system even in separated sewer areas, causing capacity constraints on the downstream infrastructure including pump stations and wastewater treatment facilities. Engineering Staff are currently establishing a plan for Inflow and Infiltration (I/I) reduction.

Some of the measures recommended for reduction of I/I are as follows:

- i. Roof leader disconnection programs,
- ii. Green programs for reducing storm water runoff,
- iii. Sump pump disconnection from sanitary to storm
- iv. Flow monitoring programs to isolate and identify the areas contributing runoff inflows into the system.

The City has revised its stormwater management standards incorporating the potential impact of climate change and Low Impact Development stormwater management practices.

### 5.3.2 Maintenance, Renewal and Rehabilitation

### 5.3.2.1 Road Network

Currently the City carries out regular maintenance activities of its road network based on minimum maintenance standards and customer complaints. This asset management plan recommends carrying out preventive maintenance activities based on windows of opportunity.

Currently, the City carries out rehabilitation/resurfacing of roads every time they are in need. Due to funding limitations, no independent reconstructions of road were done in the past unless other assets in close proximity underneath the road section were to be reconstructed.

The following road maintenance, rehabilitation and reconstruction options/alternatives are recommended based on the window of opportunity/remaining service life of the road section.

**Table 17 Road Treatment Options/Alternatives** 

|                                 |                                                                                      | Triç     | ger in Yea | rs    | Average                 |
|---------------------------------|--------------------------------------------------------------------------------------|----------|------------|-------|-------------------------|
|                                 | Activities                                                                           | Arterial | Collector  | Local | Unit Price<br>per Meter |
| nance                           | 1st Rout & Seal                                                                      | 10       | 12         | 14    | -                       |
| Maintenance                     | 2nd Rout & Seal                                                                      | 16       | 17         | 18    | -                       |
|                                 | Resurfacing<br>(Top Layer)                                                           | 20       | 21         | 22    | \$225.81                |
| α and Options                   | Complete Asphalt Replacement (Top & Bottom Layers)                                   | 22       | 23         | 24    | \$369.20                |
|                                 | Minor Rehabilitation (Top and Bottom Layers) with spot curb and gutter repairs       | 24       | 25         | 26    | \$401.20                |
| Rehabilitation (econstruction ( | Major Rehabilitation (Top and<br>Bottom Layers) with full curb<br>and gutter repairs | 26       | 27         | 28    | \$601.20                |
| Re                              | Major Reconstruction                                                                 | 28       | 31         | 34    | \$1,320.24              |

The maintenance options stated in the preceding table based on window of opportunity are proposed to be carried out on a regular basis in the future. For rehabilitation and reconstruction activities, if one of the rehabilitation or reconstruction option is carried out on a section of road, the road service life will be extended corresponding to the treatment. Therefore, any one of the rehabilitation options will be implemented for individual sections of road within the window of opportunity according to the current road conditions.

The following graphs illustrate the extended service life and estimated cost per running meter for local roads corresponding to each rehabilitation and reconstruction options.

Normal vs. Resurfacing (top layer) Road Deterioration \$225.81/m **Condition Rating** Age Resurface -Normal

Figure 31 Deterioration Curve Road Rehabilitation Option 1



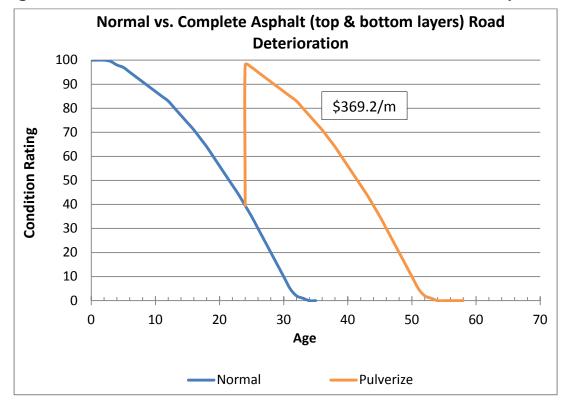



Figure 33 Deterioration Curve for Road Rehabilitation Option 3

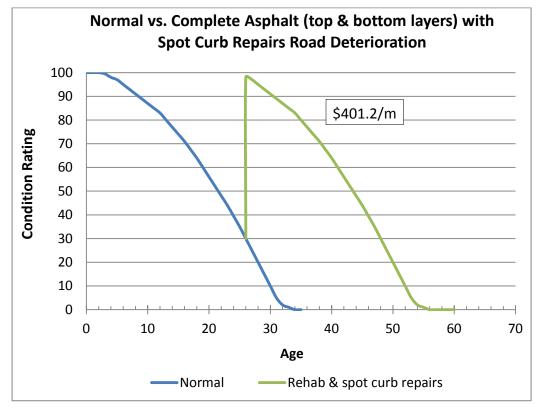
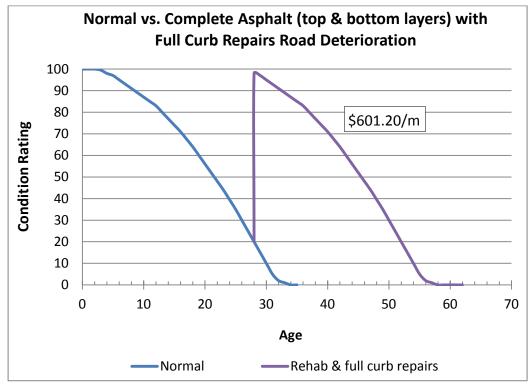




Figure 34 Deterioration Curve for Road Rehabilitation Option 4



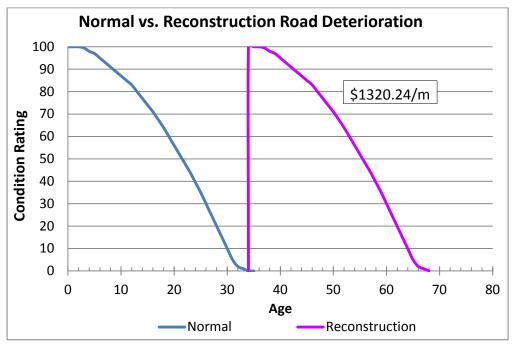



Figure 35 Deterioration Curve for Road Reconstruction

The following strategies/scenarios have been proposed for future road rehabilitation and replacement based on the overall condition of the road:

- Resurface top layer of asphalt a road section one time, then carry out complete asphalt replacement (top and bottom layer) on the road section until other assets in close proximity underneath are due for reconstruction
- 2. Resurface top layer of a road section, then carry out complete asphalt replacement (top and bottom layer) with spot curve repairs, until other assets in close proximity underneath are due for reconstruction
- 3. Resurface top layer of a road section, then carry out complete asphalt replacement (top and bottom layer) two times until other assets in close proximity underneath are due for reconstruction
- 4. Resurface top layer of a road section three times until other assets in close proximity underneath are due for reconstruction
- 5. Resurface two times, then carry out complete asphalt replacement (top and bottom layer) on the road section one time until other assets in close proximity underneath are due for reconstruction

The following graphs represent the extended road service life with cost per running meter by each strategy:

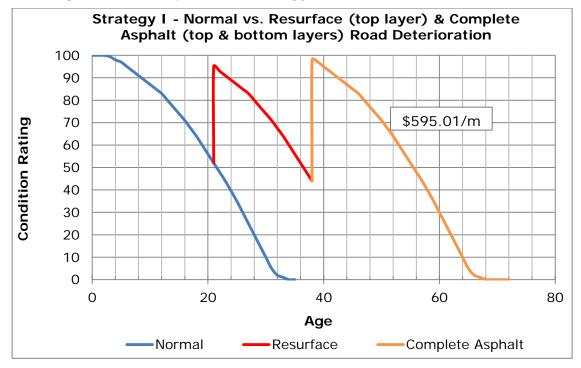



Figure 36 Proposed Strategy I for Road Rehabilitation



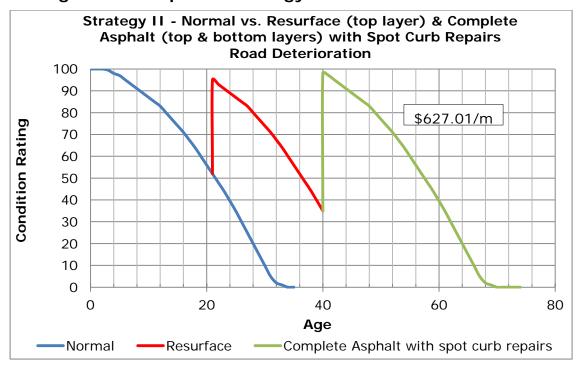
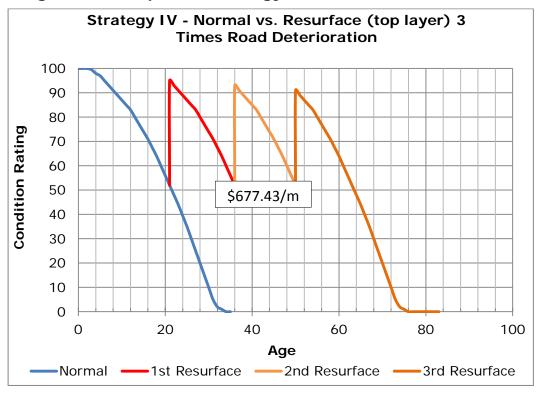






Figure 38 Proposed Strategy III for Road Rehabilitation





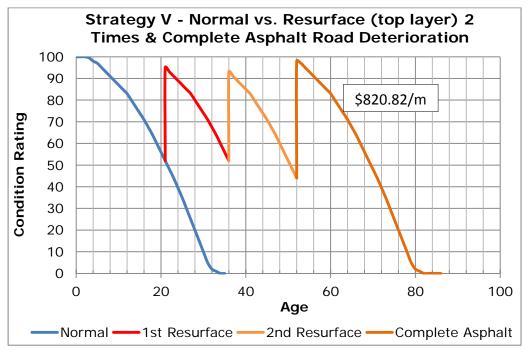



Figure 40 Proposed Strategy V for Road Rehabilitation

**Table 18 Rehabilitation Strategies for Roads** 

|     | Strategies                                                                                                         | Unit Cost<br>per metre | Extended Road<br>Service Life<br>Years | Unit Cost /<br>Year |
|-----|--------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|---------------------|
| ı   | Resurfacing (top layer) at 21 years + Complete Asphalt (top and bottom layers) at year 38                          | \$595.01               | 34                                     | \$17.50             |
| 11  | Resurfacing (top layer) at 21 years + Complete Asphalt (top and bottom layers) with Spot Curb Repairs at year 40   | \$627.01               | 36                                     | \$17.42             |
| 111 | Resurfacing (top layer) at 21 years + Complete Asphalt (top and bottom layers) at year 38 and year 57 respectively | \$964.21               | 52                                     | \$18.54             |
| IV  | Resurfacing (top layer) at year 21, year 36 and year 50 respectively                                               | \$677.43               | 42                                     | \$16.13             |
| V   | Resurfacing (top layer) at year 21 and year 36 respectively + Complete Asphalt at year 52                          | \$820.82               | 48                                     | \$17.10             |

Based on the road deterioration graphs and strategy cost table, strategy IV appears to be the most economical alternative, however, strategies will be adjusted according to individual road conditions. Notwithstanding that, it is not the City's preference to reconstruct a road alone, some rural road sections such as Blackwell SideRoad, Waterworks Road, and Plank Road are recommended for reconstruction as there are no buried infrastructures on these roads except watermains on some roads.

### 5.3.2.2 Sewer Network

Separating the existing old combined sewers has been one of the major focuses of the City since 2004. The combined sewer overflows to the St. Clair River and basement flooding in the core area of the City have been major concerns for the City. Therefore, the objectives of the sewer separation projects are to achieve reduction in the combined sewer overflows to the St. Clair River and mitigate basement flooding in the core area of the City. This will also result in improved water quality in the St. Clair River. The St. Clair River in Sarnia is also listed under Area of Concern for the receiving water quality, and hence one of the recommendations under the St. Clair River Remedial Action Plan is to carry on the sewer separation work within the City.

Most of the combined sewers are concentrated in the core area of the City. To achieve the City's objective of complete sewer separation, the existing combined sewers are replaced with a new storm sewer and a new sanitary sewer, eliminating the option of sewer rehabilitation.

A combined sewer project will generally include the complete reconstruction of all infrastructures within the right of way including installation of new storm sewer, new sanitary sewer, new watermains, new curb and gutters, sidewalks etc.

The City has recently started relining of its old concrete sewers to extend the service life for sewers that have a diameter 500mm or higher. There are two relining strategies the City currently explores, non-structural and structural relining. The following graphs compare the extended service life for non-structural, structural relining technologies with reconstruction of concrete sewers.

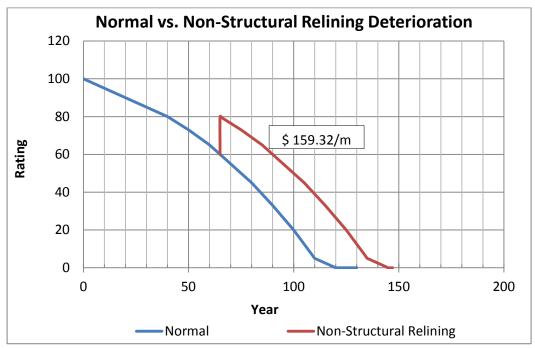
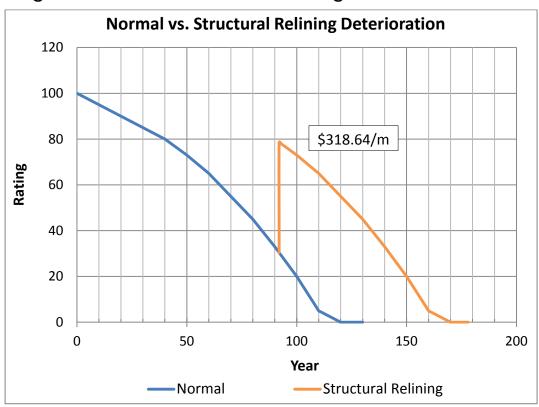




Figure 41 Sewer Non-Structural Relining Deterioration Curve





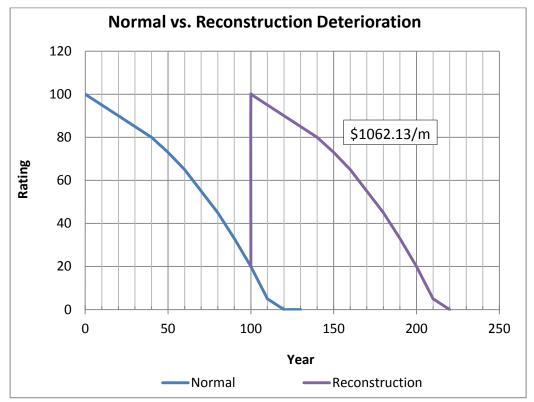



Figure 43 Sewer Reconstruction Deterioration Curve

The table below provides an example of cost comparison of sewer relining and reconstruction. It is recommended to continue doing relining on sewers based on the window of opportunity. Currently the condition assessment of the sewer network is ongoing, and the sewer reconstruction and rehabilitation strategies will be revised to reflect the actual condition of the sewer in future.

Table 19 Typical Cost of Sewer Rehabilitation Strategies

| Options                 | Cost<br>(500 mm concrete sewer) | Extended Service Life<br>(years) |
|-------------------------|---------------------------------|----------------------------------|
| Reconstruction          | \$1,062.13                      | 100                              |
| Non-Structural Relining | \$159.32                        | 25                               |
| Structural Relining     | \$318.64                        | 50                               |

### 5.3.2.3 Water Network

The City has been exploring alternative rehabilitation technologies such as pipe bursting, spray on coating and internal relining. However, there are several reasons that the City does not carry out rehabilitation activities for watermains:

- 1. The City of Sarnia is an open area where trench excavations are very easy to conduct without disturbing the surrounding environment or residences.
- 2. The City of Sarnia only maintains the water distribution system, where the watermain sizes are not big enough to apply rehabilitation activities.
- 3. The City found that replacing a watermain is actually more economical and prudent option than rehabilitating it with rehabilitation techniques that the City had looked into.

The City will continue exploring new alternative rehabilitation options in the future. The City carries out regular watermain maintenance activities to extend the watermain service life. The following table represents activities that the City has done in the past:

**Table 20 Past Maintenance Activities for Watermains** 

| Water                                 | 2003 | 2004 | 2005 | 2006 | 2007  | 2008  | 2009  | 2010  | 2011  | 2012 |
|---------------------------------------|------|------|------|------|-------|-------|-------|-------|-------|------|
| Water Main Breaks                     | 171  | 113  | 85   | 113  | 150   | 88    | 98    | 104   | 105   | 98   |
| Water Main Valve Replaced or Repaired | 23   | 27   | 17   | 21   | 22    | 15    | 30    | 43    | 31    | 20   |
| Water Main BV Replaced or Repaired    | 1    | 0    | 0    | 0    | 0     | 1     | 2     | 0     | 1     | 0    |
| Valve Chambers Serviced               | -    | -    | -    | -    | -     | -     | -     | 10    | 2     | 10   |
| Service Repairs (Excavation)          |      |      | 93   | 93   | 122   | 138   | 133   | 108   | 73    | 128  |
| Lead Services Replaced                | -    | -    | 1    | 2    | 2     | 12    | 9     | 5     | 3     | 17   |
| Hydrant Repair (Excavation)           | 7    | 10   | 14   | 13   | 13    | 11    | 13    | 20    | 9     | 8    |
| Hydrant Repair (Internal)             | -    | -    | 177  |      | 103   | 121   | 91    |       | 42    | 20   |
| Hydrant Repair (External)             |      | 0    |      |      |       |       |       |       | 24    | 14   |
| Hydrant Internal Anode                |      | -    |      |      |       |       |       |       | 3     | 4    |
| Hydrants Flushed                      | 0    | 13   | 2560 | 2560 | 2560  | 2560  | 2560  | 2560  | 2599  | 2600 |
| Explored. Excavation                  | -    | -    | -    | -    | 3     | 0     | 2     | 0     | 6     | 1    |
| Hydrant Back Flow Installations       | 4    | -    | 24   | 26   | 35    | 38    | 32    | 40    | 37    | 51   |
| Checked After Fire Use                | -    | -    |      |      |       |       |       |       |       | 29   |
| Valves Operated (Program & repairs)   | -    | -    | -    | -    | -     | -     | -     |       | 420   | 641  |
| Water Quality Inquiries               | -    | -    | -    | -    | -     | -     | -     | 38    | 42    | 58   |
| Water Pressure Inquiries              | -    | -    | -    | -    | -     | -     | -     | 12    | 28    | 34   |
| Monitor Re-occurrence                 | -    | -    | -    | -    | -     | -     | -     | 7     | 9     | 5    |
| Anodes Installed                      | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 3     | 33    | 12   |
| Accountable Water Loss                | -    |      |      |      | 8.29% | 7.33% | 8.25% | 9.13% | 4.86% |      |
| Auto Flusher Installed                | 0    | 0    | 0    | 0    | 0     | 1     | 2     | 0     | 1     | 1    |
| Water Adverse Reports                 |      |      | 1    | 0    | 0     | 1     | 0     | 0     | 2     |      |
| QA Water Tests (bacT)                 |      |      |      |      |       |       |       |       |       | 7    |
| Locates                               |      |      |      |      |       |       | -     | -     | -     | 3905 |

### 5.4 Risks Associated with the Strategies

The City recognizes that the accuracy of data is extremely crucial to the reliability of an Asset Management Plan. Therefore, the City plans to continue ongoing data collection programs, upgrading, and refining our infrastructure database for an improved and more reliable Asset Management Plan.

The City is planning to collect data on road maintenance through implementation of a works management system on an ongoing basis to develop the road deterioration curves for various road classes. The detailed road inspection survey is planned to be carried out every five years.

The City plans to implement flow-monitoring programs to further calibrate the water and sewer modelling and measure the performance in terms of targeted reduction in combined sewer overflows, basement flooding, etc. The City will continue closed circuit television (CCTV) inspections on the sewers to further update the sewer condition data and the deterioration curves. The asset management plan will be updated to reflect the actual deterioration curve and strategies will be revised accordingly as more data is being collected and accuracy being improved. A contingency plan will be developed to address any risk associated with the strategies.

The bridge inspection is planned to be carried-out at regular intervals as per the provincial requirements.

# 5.5 Risk Analysis

Risk analysis is conducted across the project types based on consequence of failure and potential of failure. Potential of failure is analysed during the condition assessment of assets, which are based on criteria such as material, age, etc. Consequence of failure assesses the impact of asset failure in six primary factors, human health and safety, environment, financial, economic development, legislative requirements, and efficiency. An Analytical Hierarchy Process (AHP) was used to determine the consequence of failure index for each asset type. The weightages of each of the six factors were analyzed based on a pair-wise comparison method, and then each asset type was assigned a certain score from 0 to 10 where 10 represents the highest risk under each factor.

The top five priority projects across the asset types identified based on risk analysis are identified in <u>Section 7 Recommendations</u>.

# 6. Financing Strategy

### 6.1 Introduction

The financial strategy has been broken into two sections; linear and non-linear assets.

By splitting the linear infrastructure from the non-linear, this report can better identify how all the linear infrastructure components can be integrated within the right of way as recommended in the Integrated Approach to Linear Infrastructure section.

The current needs identified in the executive summary for linear and non-linear infrastructure are summarized in the following tables.

**Table 21 Current Need of all Linear Core Infrastructure Assets** 

| Asset Type                      | % Current Need | Estimated Cost   | Length (km) |
|---------------------------------|----------------|------------------|-------------|
| Roads                           | 13.17%         | \$51,289,568.34  | 57.888      |
| Water Distribution<br>System    | 14.18%         | \$43,340,309.10  | 70.353      |
| Sanitary and<br>Combined Sewers | 11.36%         | \$32,919,227.27  | 38.184      |
| Storm Sewers                    | 7.96%          | \$21,489,004.10  | 25.193      |
| Total Needs                     |                | \$149,038,108.81 |             |

Table 22 Current Need of all None Linear Core Infrastructure Assets

| Asset Type                         | % Current Need | Estimated Cost  | Length (km) |
|------------------------------------|----------------|-----------------|-------------|
| Forcemains                         | 16.01%         | \$11,546,750.55 | 7.822       |
| Pump Stations                      | 36.94%         | \$25,453,249.45 |             |
| Wastewater<br>Treatment Facilities | 8.36%          | \$8,300,000.00  |             |
| Bridges                            | 3.68%          | \$2,469,785.00  |             |
| Total Needs                        |                | \$47,769,785.00 |             |

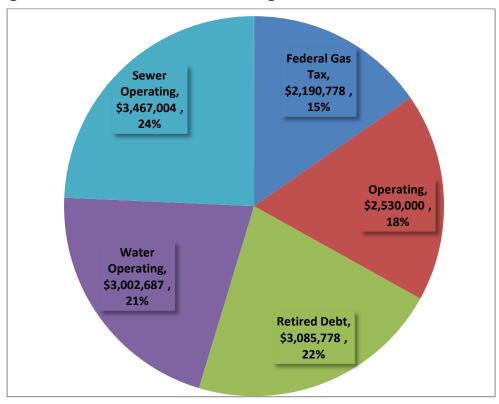
## **6.2 Funding Sources**

The city utilizes the following sources of funding for capital projects:

- 1. Federal Gas Tax
- 2. Tax Levy/Operating
- 3. Retired Debt
- 4. User Fees (water and sewer fees)

Federal gas tax funding has been a stable source of funding for a variety of projects including complete road, water, sanitary, and storm reconstruction, pump station upgrades and wastewater treatment facilities upgrades. It is assumed that federal gas tax will be a steady contribution for the duration of this financial plan.

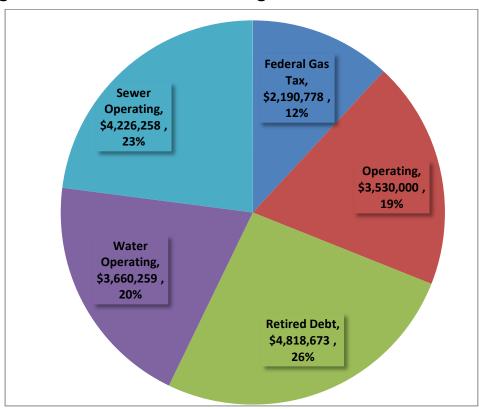
Regular contributions have been transferred from the operating budget to reserves for capital spending. In 2009 the contribution was \$800,000 and, in the 2013 budget this contribution has increased to \$2,030,000. Growth of \$100,000 per annum has been assumed in the financial plan so that by the end of the 20 year plan the estimated contribution will be \$3,830,000.


Retired debt is another key component in the funding strategy. In prior decades the majority of capital work was financed by debt. In the mid 2000's a pay as you go strategy was adopted and most projects were funded from city reserves and also grants from the federal and provincial governments. As the debt is paid off, the City is re-directing debt payments to reserves. The re-directed debt payments in 2011 were \$702,538. By 2020 the anticipated re-directed debt payments will be \$3,520,373. By the end of the plan re-directed payments are projected to be \$4,818,673.

User fees consist of water and sewer charges utilized for capital projects. A growth of 2% per year has been assumed for the duration of this plan.

**Federal Gas** Sewer Tax, Operating, \$2,190,778, \$3,140,172, 18% 26% Operating, \$2,030,000, 17% Water Operating, 2,719,626, 31% Retired Debt, \$2,013,314, 17%

Figure 44 Linear Asset Funding Sources Breakdown 2014






**Federal Gas** Tax, Sewer \$2,190,778, Operating, 13% \$3,827,852, 22% Operating, \$3,030,000, 18% Water Operating, \$3,315,209, 19% Retired Debt, \$4,818,673, 28%

Figure 46 Linear Asset Funding Sources Breakdown 2024





#### 6.3 Linear Assets

The asset management system developed by the City of Sarnia has calculated the current infrastructure needs for linear infrastructure as well as the future needs. For the financial plan, three scenarios for a twenty-year period forecast were created to illustrate how the City can best manage its assets. Each scenario shifts priorities and funding among asset types to show the effect on the current and future deficit as well as the replacement cycle of each asset. In each scenario, assumptions have been made to arrive at the figures in the tables and projections.

To get a more precise funding forecast for linear infrastructure only, the projected budget of pump stations, water pollution control centre (WPCC), roads resurfacing, rural roads resurfacing, water meters, storm water management ponds, shoreline protection and bridges are subtracted from the original twenty-year forecasted funding. Funding then is distributed among the reconstruction of roads, watermains, sanitary sewers and storm sewers. The following table illustrates the prior year's actual expenditures for linear assets, followed by the projected funding for the 20-year plan.

**Table 23 Prior Years Actual Linear Expenditures** 

| Asset Type          | Description                   | 2009           | 2010           | 2011           | 2012           |
|---------------------|-------------------------------|----------------|----------------|----------------|----------------|
|                     | Total Length of System (KM)   | 439            | 439            | 439            | 439            |
| Road Reconstruction | Cost                          | \$5,650,617.09 | \$2,902,506.40 | \$953,487.79   | \$3,688,010.54 |
|                     | Kilometers of System Replaced | 5.33           | 2.48           | 1.09           | 2.72           |
| Resurfacing         | Cost                          | \$2,604,068.87 | \$611,689.35   | \$838,954.31   | \$929,284.86   |
|                     | Kilometers of System Replaced | 12.72          | 4.32           | 4.04           | 4.41           |
|                     | Percentage of System Replaced | 4.11%          | 1.55%          | 1.17%          | 1.62%          |
|                     | Replacement Cycle             | 24.33          | 64.60          | 85.62          | 61.57          |
|                     | Total Length of System (KM)   | 496            | 496            | 496            | 496            |
| Watermains          | Cost                          | \$2,673,027.26 | \$2,916,245.72 | \$2,040,207.84 | \$2,254,596.01 |
|                     | Kilometers of System Replaced | 7.77           | 6.29           | 3.71           | 4.42           |
|                     | Percentage of System Replaced | 1.57%          | 1.27%          | 0.75%          | 0.89%          |
|                     | Replacement Cycle             | 63.82          | 78.83          | 133.84         | 112.20         |
|                     | Total Length of System (KM)   | 388            | 388            | 388            | 388            |
| Sewer - Sanitary    | Cost                          | \$3,258,232.21 | \$2,237,506.07 | \$3,896,307.53 | \$2,107,963.23 |
|                     | Kilometers of System Replaced | 5.46           | 4.60           | 3.87           | 3.40           |
|                     | Percentage of System Replaced | 1.41%          | 1.18%          | 1.00%          | 0.88%          |
|                     | Replacement Cycle             | 71.12          | 84.40          | 100.19         | 114.05         |
|                     | Total Length of System (KM)   | 293            | 293            | 293            | 293            |
| Sewer - Storm       | Cost                          | \$2,046,197.50 | \$3,773,699.76 | \$2,049,786.91 | \$1,687,162.64 |
|                     | Kilometers of System Replaced | 2.88           | 5.01           | 2.18           | 2.35           |
|                     | Percentage of System Replaced | 0.98%          | 1.71%          | 0.74%          | 0.80%          |
|                     | Replacement Cycle             | 101.86         | 58.53          | 134.26         | 124.79         |

**Table 24 Projected Funding Sources for 20 Years** 

| Year | Fe | deral Gas Tax | Operating       | Retired Debt    | Wa | ater Operating | Sev | wer Operating | Total            |
|------|----|---------------|-----------------|-----------------|----|----------------|-----|---------------|------------------|
| 2013 | \$ | 2,190,778.00  | \$ 2,330,000.00 | \$ 1,141,716.91 | \$ | 2,516,300.00   | \$  | 1,278,600.00  | \$ 9,457,394.91  |
| 2014 | \$ | 2,190,778.00  | \$ 1,830,000.00 | \$ 1,813,314.31 | \$ | 2,569,626.00   | \$  | 1,340,172.00  | \$ 9,743,890.31  |
| 2015 | \$ | 2,190,778.00  | \$ 1,780,000.00 | \$ 2,240,706.97 | \$ | 2,624,018.52   | \$  | 1,402,975.44  | \$ 10,238,478.93 |
| 2016 | \$ | 2,190,778.00  | \$ 1,780,000.00 | \$ 2,695,510.79 | \$ | 2,679,498.89   | \$  | 1,467,034.95  | \$ 10,812,822.63 |
| 2017 | \$ | 2,190,778.00  | \$ 1,880,000.00 | \$ 2,705,847.75 | \$ | 2,736,088.87   | \$  | 1,532,375.65  | \$ 11,045,090.27 |
| 2018 | \$ | 2,190,778.00  | \$ 1,980,000.00 | \$ 2,750,415.27 | \$ | 2,793,810.65   | \$  | 1,599,023.16  | \$ 11,314,027.08 |
| 2019 | \$ | 2,190,778.00  | \$ 2,080,000.00 | \$ 2,885,778.41 | \$ | 2,852,686.86   | \$  | 1,667,003.62  | \$ 11,676,246.89 |
| 2020 | \$ | 2,190,778.00  | \$ 2,180,000.00 | \$ 3,320,373.25 | \$ | 2,912,740.60   | \$  | 1,736,343.70  | \$ 12,340,235.54 |
| 2021 | \$ | 2,190,778.00  | \$ 2,280,000.00 | \$ 3,801,692.43 | \$ | 2,973,995.41   | \$  | 1,807,070.57  | \$ 13,053,536.41 |
| 2022 | \$ | 2,190,778.00  | \$ 2,380,000.00 | \$ 4,618,672.80 | \$ | 3,036,475.32   | \$  | 1,879,211.98  | \$ 14,105,138.10 |
| 2023 | \$ | 2,190,778.00  | \$ 2,480,000.00 | \$ 4,618,672.80 | \$ | 3,100,204.82   | \$  | 1,952,796.22  | \$ 14,342,451.84 |
| 2024 | \$ | 2,190,778.00  | \$ 2,580,000.00 | \$ 4,618,672.80 | \$ | 3,165,208.92   | \$  | 2,027,852.15  | \$ 14,582,511.86 |
| 2025 | \$ | 2,190,778.00  | \$ 2,680,000.00 | \$ 4,618,672.80 | \$ | 3,231,513.10   | \$  | 2,104,409.19  | \$ 14,825,373.09 |
| 2026 | \$ | 2,190,778.00  | \$ 2,780,000.00 | \$ 4,618,672.80 | \$ | 3,299,143.36   | \$  | 2,182,497.37  | \$ 15,071,091.53 |
| 2027 | \$ | 2,190,778.00  | \$ 2,880,000.00 | \$ 4,618,672.80 | \$ | 3,368,126.23   | \$  | 2,262,147.32  | \$ 15,319,724.35 |
| 2028 | \$ | 2,190,778.00  | \$ 2,980,000.00 | \$ 4,618,672.80 | \$ | 3,438,488.75   | \$  | 2,343,390.27  | \$ 15,571,329.82 |
| 2029 | \$ | 2,190,778.00  | \$ 3,080,000.00 | \$ 4,618,672.80 | \$ | 3,510,258.53   | \$  | 2,426,258.07  | \$ 15,825,967.40 |
| 2030 | \$ | 2,190,778.00  | \$ 3,180,000.00 | \$ 4,618,672.80 | \$ | 3,583,463.70   | \$  | 2,510,783.23  | \$ 16,083,697.73 |
| 2031 | \$ | 2,190,778.00  | \$ 3,280,000.00 | \$ 4,618,672.80 | \$ | 3,658,132.97   | \$  | 2,596,998.90  | \$ 16,344,582.67 |
| 2032 | \$ | 2,190,778.00  | \$3,380,000.00  | \$4,618,672.80  | \$ | 3,734,295.63   | \$  | 2,684,938.88  | \$ 16,608,685.31 |

# 6.3.1 Linear Asset Scenario 1

**Table 25 Projected Project Completion Scenario 1** 

| Year                                    | Description                                                                                                                                                                       | 2013                                                                      | 2014                                                                                       | 2015                                                                      | 2016                                                                                                   | 2017                                                                      | 2018                                                               | 2019                                                                                                                   | 2020                                                                      | 2021                                                                                                              | 2022                                                                                                                              |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Road Reconstruction<br>Road Resurfacing | Total Length of System (KM)   Budget Kilometers of System Replaced Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle                           | 439<br>\$2,853,380.25<br>2.16<br>\$950,000.00<br>4.21<br>1.45%<br>68.93   | 439<br>\$2,949,470.81<br>2.19<br>\$950,000.00<br>4.12<br>1.44%<br>69.52                    | 439<br>2.24<br>\$1,050,000.00<br>4.47<br>1.53%<br>65.39                   | 439<br>\$3,190,600.71<br>2.28<br>\$1,300,000.00<br>5.43<br>1.75%<br>57.00                              | 439<br>\$3,234,963.28<br>2.26<br>\$1,400,000.00<br>5.73<br>1.82%<br>54.93 | \$ 53                                                              | \$3,291,624.68 \$3,379,573.21<br>2.26 2.27<br>\$1,500,000.00 \$1,600,000.00<br>6.02 6.29<br>1.88% 1.95%<br>53.05 51.26 | 439<br>\$3,568,735.00<br>2.35<br>\$1,700,000.00<br>6.55<br>2.03%<br>49.29 |                                                                                                                   | 439 439<br>\$3,774,436.11 \$4,093,603.32<br>2.44 2.59<br>\$1,800,000.00 \$1,900,000.00<br>6.80 7.04<br>2.11% 2.19%<br>47.49 45.56 |
| Water mains Sewer - Sanitary            | Total Length of System (KM) Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle Total Length of System (KM) Budget Kilometers of System Replaced | 496<br>\$1,947.342.69<br>3.16<br>0.64%<br>156.91<br>388<br>\$1,863,119.49 | 496 496 496 3,012,921,49 3,16 3,20 0.64% 0.65% 156.91 154.83 388 3,883,1949 \$1,925,861.98 | 496<br>\$2,103,242.83<br>3.28<br>0.66%<br>151.15<br>388<br>\$2,012,276.89 | \$2,177,485.10 \$2,207,761.16 3.33 3.31 0.67% 0.67% 148.91 149.81 388 388 \$2,083,308.16 \$2,112,74,77 | 496<br>\$2,207,761.16<br>3.31<br>0.67%<br>149.81<br>388<br>\$2,112,274,77 |                                                                    | \$2,246,430.80 \$2,306,452.91<br>3.30 3.32<br>0.67% 0.67%<br>150.17 149.19<br>\$2,149,271.93 \$2,206,698.07<br>2.26    | 496<br>\$2,435,549.92<br>3.44<br>0.69%<br>144.11<br>388<br>\$2,330,211.58 | 496<br>\$2,575,934<br>3.57<br>0.72%<br>138.98<br>388<br>\$2,464,524                                               | 496<br>48 \$2,793,756.11<br>3.79<br>0.77%<br>130.71<br>388<br>47 \$2,672,925.24                                                   |
| Sewer - Storm                           | em (KM)  m Replaced  m Replaced                                                                                                                                                   | 0.56%<br>179.54<br>293<br>\$1,843,552.48<br>2.16<br>0.74%                 | 0.56%<br>177.16<br>293<br>\$1,905,636.03<br>2.19<br>0.75%                                  | 0.58%<br>172.95<br>293<br>\$1,991,143.38<br>2.24<br>0.77%                 | 0.59%<br>170.39<br>293<br>\$2,061,428.66<br>2.28<br>0.78%                                              | 0.58%<br>171.42<br>293<br>\$2,090,091.06<br>2.26<br>0.77%                 | 0.58%<br>171.83<br>293<br>\$2,126,699.67<br>2.26<br>0.77%          | 0.59%<br>170.71<br>293<br>\$2,183,522.70<br>2.27<br>0.78%                                                              | 0.61%<br>164.89<br>293<br>\$2,305,739.04<br>2.35<br>0.80%                 | 0.63%<br>159.03<br>293<br>\$2,438,641.34<br>2.44<br>0.83%                                                         | 0.67%<br>149.56<br>293<br>\$2,644,853.43<br>2.59<br>0.89%                                                                         |
| Year Total Le                           | Description                                                                                                                                                                       | r.                                                                        | 2024<br>439<br>64 186 634 48                                                               | 2025<br>439                                                               | 2024 2025 2026 2027<br>439 439 439 439 439 64 486 654 486 654 787 655 655                              | 2027<br>439<br>84 333 375 65                                              | 5                                                                  |                                                                                                                        | 2030                                                                      | 2031 2032<br>439 439 64 67 803 0 64 647 863 0 64 647 863 0 64 647 863 0 64 647 863 0 64 647 863 0 64 647 863 0 64 | 2032<br>439<br>64 607 893 05                                                                                                      |
| Road Resurfacing                        | iers of System Replaced<br>ers of System Replaced<br>tage of System Replaced<br>ament Cycle                                                                                       |                                                                           | \$4,186,634.48<br>2.55<br>\$2,100,000.00<br>7.48<br>2.28%<br>43.77                         | \$4,234,550.13<br>2.53<br>\$2,200,000.00<br>7.68<br>2.33%<br>42.99        | \$4,283,424.10<br>2.51<br>\$2,300,000.00<br>7.87<br>2.36%<br>42.29                                     | \$4,333,275.55<br>2.49<br>\$2,400,000.00<br>8.06<br>2.40%<br>41.64        | \$4,384,124.02<br>2.47<br>\$2,500,000.00<br>8.23<br>2.44%<br>41.05 |                                                                                                                        | \$4,488,892.22<br>2.43<br>\$2,700,000.00<br>8.54<br>2.50%<br>40.03        | \$4,542,853.03<br>2.41<br>\$2,800,000.00<br>8.68<br>2.53%<br>39.58                                                | \$4,597,893.05<br>2.39<br>\$2,900,000.00<br>8.82<br>2.55%<br>39.17                                                                |
| Water mains                             | Total Length of System (KM)  Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle                                                                 | 496<br>\$2,825,187.23<br>3.76<br>0.76%<br>131.84                          | 496<br>\$2,857,246.97<br>3.73<br>0.75%<br>132.97                                           | 496<br>\$2,889,947.90<br>3.70<br>0.75%<br>134.09                          | 496<br>\$2,923,302.85<br>3.67<br>0.74%<br>135.21                                                       | 496<br>\$2,957,324.90<br>3.64<br>0.73%<br>136.33                          | 496<br>\$2,992,027.40<br>3.61<br>0.73%<br>137.44                   | 496<br>\$3,027,423.94<br>3.58<br>0.72%<br>138.55                                                                       | 496<br>\$3,063,528.41<br>3.55<br>0.72%<br>139.66                          | 496<br>\$3,100,354.97<br>3.52<br>0.71%<br>140.76                                                                  | 496<br>\$3,137,918.07<br>3.50<br>0.70%<br>141.86                                                                                  |
| Sewer - Sanitary                        | Total Length of System (KM)  Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle                                                                 | 388<br>\$2,702,996.95<br>2.57<br>0.66%<br>150.85                          | 388<br>\$2,733,670.10<br>2.55<br>0.66%<br>152.14                                           | 388<br>\$2,764,956.71<br>2.53<br>0.65%<br>153.43                          | 388<br>\$2,796,869.05 3<br>2.51<br>0.65%<br>154.71                                                     | 388<br>\$2,829,419.63<br>2.49<br>0.64%<br>155.99                          | 388<br>\$2,862,621.23<br>2.47<br>0.64%<br>157.27                   | 388<br>\$2,896,486.86<br>2.45<br>0.63%<br>158.54                                                                       | 388<br>\$2,931,029.80<br>2.43<br>0.63%<br>159.80                          | 388<br>\$2,966,263.60<br>2.41<br>0.62%<br>161.06                                                                  | 388<br>\$3,002,202.08<br>2.39<br>0.62%                                                                                            |
| Sewer - Storm                           | Total Length of System (KM)  Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle                                                                 | 293<br>\$2,674,609.31<br>2.57<br>0.88%<br>113.90                          | 293<br>\$2,704,960.32<br>2.55<br>0.87%<br>114.88                                           | 293<br>\$2,735,918.35<br>2.53<br>0.86%<br>115.85                          | 293<br>\$2,767,495.53 3<br>2.51<br>0.86%<br>116.82                                                     | 293<br>\$2,799,704.27<br>2.49<br>0.85%<br>117.78                          | 293<br>\$2,832,557.17<br>2.47<br>0.84%<br>118.75                   | 293<br>\$2,866,067.13<br>2.45<br>0.84%<br>119.71                                                                       | 293<br>\$2,900,247.30<br>2.43<br>0.83%<br>120.66                          | 293<br>\$2,935,111.06<br>2.41<br>0.82%<br>121.61                                                                  | 293<br>\$2,970,672.11<br>2.39<br>0.82%<br>122.56                                                                                  |

#### 6.3.1.1 Scenario 1 Background

The focus of this scenario is road rehabilitation and full reconstruction of all other assets. With the projected available funding, the City of Sarnia can achieve the following quantity of reconstruction and rehabilitation work.

Table 26 Summary of Project Completion Scenario 1

| Asset Type                       | Length of<br>Work<br>(km) | Cost of Work (\$) | % Funding | Total %<br>System<br>Replaced | Average<br>Replacement<br>Cycle |
|----------------------------------|---------------------------|-------------------|-----------|-------------------------------|---------------------------------|
| Road<br>Reconstruction           | 47.84                     | \$77,045,497.59   | 33.54%    | 42.26%                        | 48.90                           |
| Watermain<br>Reconstruction      | 69.98                     | \$52,581,140.12   | 22.89%    | 14.11%                        | 142.17                          |
| Sanitary Sewer<br>Reconstruction | 47.84                     | \$50,306,988.59   | 21.90%    | 12.33%                        | 162.68                          |
| Storm Sewer<br>Reconstruction    | 47.85                     | \$49,778,650.35   | 21.67%    | 16.33%                        | 122.83                          |
| Road<br>Rehabilitation           | 137.67                    | \$38,650,000.00   |           |                               |                                 |
| Total                            | 351.18                    | \$268,362,276.65  | Average   | Replacement<br>Cycle          | 11915                           |

The City has focused the majority of its recent capital spending on combined sewer separation. This continues to be an important philosophy as it is anticipated that most of the needs addressed in the twenty-year forecast will be combined sewer separation projects. Watermain replacement continues to be a focus of the City's capital spending. Not only do watermains make up the largest portion of City's assets at 496 KM, but they are also the largest asset in our current need at 70KM. This strategy completes approximately 1 km of watermain per year besides the standard reconstruction projects. Another core element of this scenario is the aggressive increase in road rehabilitation funding. Road Rehabilitation Strategy IV proved to be the most efficient method of upgrading our road infrastructure and is our recommended practice. As shown in the following Integrated Asset life Cycles figure, this method lengthens the life of the road to approximately match that of the underground infrastructure. This allows the entire infrastructure to be reconstructed at the same time, therefore providing maximum benefit with the least cost.

Table 27 Comparative Replacement Cost of Individual vs Integrated

| Project Type                      | Road        | Water     | Sanitary<br>Sewer | Storm<br>Sewer | Total       |
|-----------------------------------|-------------|-----------|-------------------|----------------|-------------|
| Individual Projects               | \$1,363,550 | \$722,870 | \$904,200         | \$1,179,770    | \$4,170,390 |
| Integrated Projects               | \$1,363,550 | \$552,870 | \$656,200         | \$931,770      | \$3,504,390 |
| Savings on<br>Integrated Projects | -           | \$170,000 | \$248,000         | \$248,000      | \$666,000   |

Road, Sanitary, and Storm reconstruction are all shown as combined reconstruction projects at approximately 48km for the 20 year projection.

100 90 80 Recommended **Condition Rating** 70 Capital 60 Replacement Point 50 40 30 20 10 0 20 40 60 80 i 100 0 120 140 160 Age Road Resurfacing --- Water

Figure 48 Integrated Asset life Cycles

#### 6.3.1.2 Current Linear Asset Deficit for Scenario 1

The current linear asset deficit for this scenario is made up of the following costs.

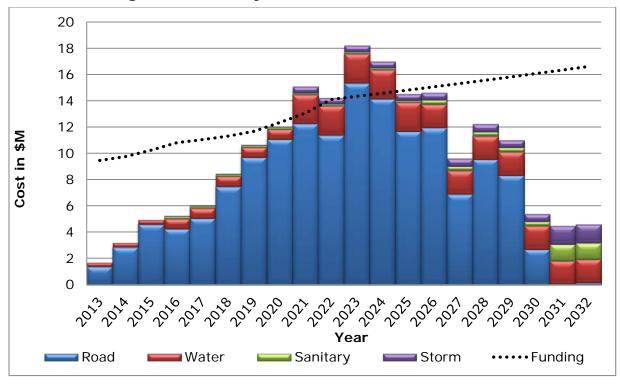
**Table 28 Scenario 1 Current Linear Asset Deficit** 

| Asset Type          | Cost             |
|---------------------|------------------|
| Road Reconstrution  | \$46,103,406.34  |
| Road Rehabilitation | \$5,186,162.00   |
| Watermain           | \$43,340,309.10  |
| Sanitary Sewer      | \$32,919,227.27  |
| Storm Sewer         | \$21,489,004.10  |
| Total               | \$149,038,108.81 |

Two road costs have been considered in this scenario. If the road and underground infrastructure for that segment need replacement, the full road reconstruction cost of \$1,320.24 per meter was used. If the road segment needs replacement but the underground infrastructure does not then the road resurfacing cost of \$225.81 per meter was used. Although resurfacing the stand-alone road network included in the current need is not an ideal practice; historically this has had a positive impact on the overall condition of the road network and given the funding restrictions it is recommended to continue this practice. At the end of the projection, the current linear asset deficit will decrease to \$342,908.

Table 29 Current Linear Asset Deficit Addressed in Scenario 1

| Year | Linear Asset<br>Opening Deficit | Inflation      | Funding         | Linear Asset<br>Closing Deficit |
|------|---------------------------------|----------------|-----------------|---------------------------------|
| 2013 | \$149,038,108.81                | \$2,791,614.28 | \$9,457,394.91  | \$142,372,328.18                |
| 2014 | \$142,372,328.18                | \$2,652,568.76 | \$9,743,890.31  | \$135,281,006.63                |
| 2015 | \$135,281,006.63                | \$2,500,850.55 | \$10,238,478.93 | \$127,543,378.25                |
| 2016 | \$127,543,378.25                | \$2,334,611.11 | \$10,812,822.63 | \$119,065,166.74                |
| 2017 | \$119,065,166.74                | \$2,165,225.72 | \$10,803,880.65 | \$110,426,511.81                |
| 2018 | \$110,426,511.81                | \$2,012,249.69 | \$9,814,027.08  | \$102,624,734.43                |
| 2019 | \$102,624,734.43                | \$1,850,969.75 | \$10,076,246.89 | \$94,399,457.29                 |
| 2020 | \$94,399,457.29                 | \$1,675,184.43 | \$10,640,235.54 | \$85,434,406.18                 |
| 2021 | \$85,434,406.18                 | \$1,483,617.40 | \$11,253,536.41 | \$75,664,487.17                 |
| 2022 | \$75,664,487.17                 | \$1,269,186.98 | \$12,205,138.10 | \$64,728,536.05                 |
| 2023 | \$64,728,536.05                 | \$1,056,768.23 | \$11,890,124.45 | \$53,895,179.83                 |
| 2024 | \$53,895,179.83                 | \$882,352.57   | \$9,777,551.54  | \$44,999,980.85                 |
| 2025 | \$44,999,980.85                 | \$702,210.52   | \$9,889,454.74  | \$35,812,736.63                 |
| 2026 | \$35,812,736.63                 | \$516,182.81   | \$10,003,596.00 | \$26,325,323.45                 |
| 2027 | \$26,325,323.45                 | \$351,344.16   | \$8,758,115.28  | \$17,918,552.33                 |
| 2028 | \$17,918,552.33                 | \$241,278.07   | \$5,854,648.62  | \$12,305,181.78                 |
| 2029 | \$12,305,181.78                 | \$185,142.95   | \$3,048,034.31  | \$9,442,290.42                  |
| 2030 | \$9,442,290.42                  | \$127,575.24   | \$3,063,528.41  | \$6,506,337.25                  |
| 2031 | \$6,506,337.25                  | \$68,119.65    | \$3,100,354.97  | \$3,474,101.92                  |
| 2032 | \$3,474,101.92                  | \$6,723.68     | \$3,137,918.07  | \$342,907.53                    |


#### 6.3.1.3 Overall Linear Asset Deficit for Scenario 1

By the end of the projection, it is estimated that the linear asset deficit will be \$126,129,725. This is a decrease of \$22,908,384 over the 20-year term. Because the life cycle of the road network is considerably shorter than that of the underground infrastructure, significantly more of the future needs are road network needs (see following figure).

Table 30 Overall Linear Asset Deficit Addressed in Scenario 1

| Year | Linear Asset<br>Opening Deficit | Inflation      | Future Need     | Funded          | Linear Asset<br>Closing<br>Deficit |
|------|---------------------------------|----------------|-----------------|-----------------|------------------------------------|
| 2013 | \$149,038,108.81                | \$2,791,614.28 | \$1,699,240.51  | \$9,457,394.91  | \$144,071,568.69                   |
| 2014 | \$144,071,568.69                | \$2,686,553.57 | \$3,177,298.74  | \$9,743,890.31  | \$140,191,530.68                   |
| 2015 | \$140,191,530.68                | \$2,599,061.04 | \$4,925,691.21  | \$10,238,478.93 | \$137,477,803.99                   |
| 2016 | \$137,477,803.99                | \$2,533,299.63 | \$5,241,811.88  | \$10,812,822.63 | \$134,440,092.87                   |
| 2017 | \$134,440,092.87                | \$2,467,900.05 | \$6,049,770.24  | \$11,045,090.27 | \$131,912,672.90                   |
| 2018 | \$131,912,672.90                | \$2,411,972.92 | \$8,471,763.73  | \$11,314,027.08 | \$131,482,382.48                   |
| 2019 | \$131,482,382.48                | \$2,396,122.71 | \$10,681,863.23 | \$11,676,246.89 | \$132,884,121.52                   |
| 2020 | \$132,884,121.52                | \$2,410,877.72 | \$12,054,936.97 | \$12,340,235.54 | \$135,009,700.67                   |
| 2021 | \$135,009,700.67                | \$2,439,123.29 | \$15,100,473.12 | \$13,053,536.41 | \$139,495,760.67                   |
| 2022 | \$139,495,760.67                | \$2,507,812.45 | \$14,234,469.14 | \$14,105,138.10 | \$142,132,904.16                   |
| 2023 | \$142,132,904.16                | \$2,555,809.05 | \$18,204,222.64 | \$14,342,451.84 | \$148,550,484.00                   |
| 2024 | \$148,550,484.00                | \$2,679,359.44 | \$16,994,322.71 | \$14,582,511.86 | \$153,641,654.28                   |
| 2025 | \$153,641,654.28                | \$2,776,325.62 | \$14,521,821.89 | \$14,825,373.09 | \$156,114,428.71                   |
| 2026 | \$156,114,428.71                | \$2,820,866.74 | \$14,645,153.51 | \$15,071,091.53 | \$158,509,357.43                   |
| 2027 | \$158,509,357.43                | \$2,863,792.66 | \$9,590,760.19  | \$15,319,724.35 | \$155,644,185.94                   |
| 2028 | \$155,644,185.94                | \$2,801,457.12 | \$12,216,162.05 | \$15,571,329.82 | \$155,090,475.29                   |
| 2029 | \$155,090,475.29                | \$2,785,290.16 | \$11,003,852.07 | \$15,825,967.40 | \$153,053,650.12                   |
| 2030 | \$153,053,650.12                | \$2,739,399.05 | \$5,377,642.83  | \$16,083,697.73 | \$145,086,994.26                   |
| 2031 | \$145,086,994.26                | \$2,574,848.23 | \$4,462,042.82  | \$16,344,582.67 | \$135,779,302.64                   |
| 2032 | \$135,779,302.64                | \$2,383,412.35 | \$4,575,695.46  | \$16,608,685.31 | \$126,129,725.15                   |

Figure 49 Yearly Linear Asset Need Forecast



### 6.3.1.4 Scenario 1 Replacement Life Cycle

The desired replacement life cycle for road and underground infrastructures (watermains, sanitary sewers and storm sewers) are 35 years and 100 years respectively. In this projection, significant progress is made to lower the replacement life cycle in all asset types. However, as shown in the following table, the replacement cycles of all four types of assets are well above the desired replacement cycle, especially watermains and sanitary sewers.

**Table 31 Scenario 1 Average Replacement Life Cycles** 

|                | Average<br>Replacement<br>Cycle | Expected<br>Life Cycle |
|----------------|---------------------------------|------------------------|
| Road           | 48.90                           | 35.00                  |
| Watermains     | 142.17                          | 100.00                 |
| Sanitary Sewer | 162.68                          | 100.00                 |
| Storm Sewer    | 122.83                          | 100.00                 |
| Average        | 119.15                          | 83.75                  |

#### 6.3.2 Linear Asset Scenario 2

**Table 32 Projected Project Completion Scenario 2** 

|             | Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | Project C                                                                                                                    | ompletion                                                                             | Scena                                                                                                            | rio 2                                                                                                                                                                                                                                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2022        | \$3,761,131.65 \$4,097,644.19 2.43 2.60 \$1,300,000.00 \$1,300,000.00 2.33 2.24 1.08% 1.10% 92.17 90.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 496<br>\$3,841,541.43<br>5.22<br>1.05%<br>95.06<br>388<br>\$2,945,181.76<br>2.86<br>0.74%                                                                                                                                         | 293<br>\$1,920,770.71<br>1.88<br>0.64%<br>155.50                                                                             | \$4,8                                                                                 | 496<br>\$4,592,605.59<br>5.12<br>1.03%<br>96.92                                                                  | 388<br>\$3,520,997.62<br>2.80<br>0.72%<br>138.40<br>293<br>\$2,296,302.80<br>1.85<br>0.63%                                                                                                                                                    |
| 2021        | 439<br>2.43<br>2.43<br>\$1,300,000.00<br>2.33<br>1.08%<br>92.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 496<br>\$3,526,060.92<br>4.89<br>0.98%<br>101.53<br>388<br>\$2,703,313.37<br>2.68<br>0.69%<br>144.98                                                                                                                              | 293<br>\$1,763,030.46<br>1.76<br>0.60%<br>166.09                                                                             | 439<br>\$4,814,266.45<br>2.55<br>\$1,300,000.00<br>4.03<br>1.50%<br>66.68             | 496<br>\$4,513,374.80<br>5.13<br>1.03%<br>96.69                                                                  | \$3,460,254.01<br>2.81<br>0.72%<br>138.07<br>293<br>\$2,256,687.40<br>1.85<br>0.63%                                                                                                                                                           |
| 2020        | 439<br>\$3,532,875.37<br>2.33<br>\$1,300,000.00<br>2.43<br>1.08%<br>92.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 496<br>\$3.312,070.66<br>4.68<br>0.94%<br>105.97<br>388<br>\$2,539,254.17<br>2.56<br>0.66%<br>151.32                                                                                                                              | 293<br>1.656,035.33<br>1.69<br>0.58%<br>173.35                                                                               | \$4,7                                                                                 | 496<br>\$4,435,109.32<br>5.14<br>1.04%<br>96.47                                                                  | 388<br>\$3,400,250.48<br>2.82<br>0.73%<br>137.75<br>293<br>\$2,217,554.66<br>1.86<br>0.63%                                                                                                                                                    |
| 2019        | 439         439         439         439         439           \$2,940,313.26         \$3,044,103.24         \$3,086,428.89         \$3,140,488.66         \$5,320,399.01           \$2.14         \$2.17         \$2.16         \$2.15         \$2.23           \$1,050,000.00         \$1,300,000.00         \$1,400,000.00         \$1,500,000.00         \$1,300,000.00           \$1,73         \$2.84         \$3.15         \$3.43         \$2.53           \$0.88%         \$1.14%         \$1.21%         \$1.27%         \$1.09%           \$113.53         \$87.52         \$82.74         \$78.55         \$92.16 | 496<br>4.49<br>0.90%<br>110.54<br>110.54<br>388<br>\$2.386,536.79<br>2.46<br>0.63%<br>157.85                                                                                                                                      | 293<br>1,556,437.03<br>1.62<br>0.55%<br>180.83                                                                               | \$4,6                                                                                 | 496<br>\$4,357,790.22<br>5.15<br>1.04%<br>96.26                                                                  | 388<br>2.82<br>0.73%<br>137.45<br>137.45<br>293<br>\$2,178.895.11<br>1.86<br>0.64%                                                                                                                                                            |
| 2018        | 439<br>2.15<br>\$1,500,000.00<br>3.43<br>1.27%<br>78.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$2,5                                                                                                                                                                                                                             | 293<br>1, \$1,472,104.06<br>1.56<br>0.53%<br>187.44                                                                          | \$4,5                                                                                 | 496<br>1 \$4,281,398.95<br>5.16<br>1.04%<br>96.05                                                                | 388<br>2.83, 282, 405.86<br>2.83<br>0.73%<br>137.15<br>293<br>\$2,140,699.47<br>1.86<br>0.64%                                                                                                                                                 |
| 2017        | 439<br>2.16<br>\$1,400,000.00<br>1.21%<br>82.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$2,8                                                                                                                                                                                                                             | 293<br>1,446,763.54<br>1.57<br>0.53%<br>186.98                                                                               | \$4,4                                                                                 | 496<br>\$4,205,917.30<br>5.17<br>1.04%<br>95.86                                                                  | 388<br>388<br>2.83<br>0.73%<br>136.88<br>293<br>\$2,102.958.65<br>1.87<br>0.64%                                                                                                                                                               |
| 2016        | 439<br>2.17<br>\$1,300,000.00<br>2.84<br>1.14%<br>87.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 496<br>4.37<br>0.88%<br>113.62<br>388<br>\$2.187,949.20<br>2.39<br>0.62%<br>162.24                                                                                                                                                | 293<br>1,426,923.36<br>1.58<br>0.54%<br>185.87                                                                               | \$4,4                                                                                 | 496<br>\$4,131,327.46<br>5.18<br>1.05%<br>95.68                                                                  | 388<br>\$3,167,351.06<br>2.84<br>0.73%<br>136.62<br>293<br>\$2,065,663.73<br>1.87<br>0.65%                                                                                                                                                    |
| 2015        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 496<br>4.30<br>0.87%<br>115.33<br>388<br>\$2,113,350.15<br>2.36<br>0.61%<br>164.68                                                                                                                                                | 293<br>1,\$1,378,271.84<br>1.55<br>0.53%<br>188.65                                                                           | \$4,3                                                                                 | 496<br>\$4,057,611.93<br>5.19<br>1.05%<br>95.50                                                                  | 388<br>2.85<br>0.73%<br>136.37<br>293<br>\$2,028,805.96<br>1.88<br>0.64%                                                                                                                                                                      |
| 2014        | 439<br>\$2,814,044.90<br>2.09<br>\$950,000.00<br>1.70<br>0.86%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$2,0                                                                                                                                                                                                                             | 293<br>14,319,083.55<br>1.52<br>0.52%<br>193.25                                                                              | \$4,2                                                                                 | 496<br>\$3,984,753.56<br>5.20<br>1.05%<br>95.34                                                                  | 388<br>33,054,977.73<br>2.85<br>0.73%<br>136.14<br>293<br>\$1,992,376.78<br>1.88<br>0.64%                                                                                                                                                     |
| 2013        | 439<br>\$2,722,366.37<br>2.06<br>\$950,000.00<br>1.63<br>0.84%<br>119.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 496<br>\$2,552,218.47<br>4.14<br>0.84%<br>119.72<br>388<br>\$1,956,700.83<br>2.27<br>0.58%<br>170.95                                                                                                                              | 293<br>\$1,276,109.24<br>1.50<br>0.51%<br>195.84                                                                             | 439<br>\$4,173,584.59<br>2.59<br>\$1,300,000.00<br>2.14<br>1.08%<br>92.73             | 496<br>\$3,912,735.55<br>5.21<br>1.05%<br>95.19                                                                  | 388<br>\$2,999,763.92<br>2.85<br>0.74%<br>135.93<br>293<br>\$1,956,367.78<br>1.88<br>0.64%                                                                                                                                                    |
| Description | Total Length of System (KM) Budget Kilometers of System Replaced Budget Kilometers of System Replaced Percentage of System Replaced Percentage of System Replaced                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Length of System (KM) Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle Total Length of System (KM) Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle | Total Length of System (KM) Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle Description | Total Leng<br>Budget<br>Kilometers<br>Budget<br>Kilometers<br>Kilometers<br>Percentag | Total Length of System (KM) Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle | Total Length of System (KM) Budget Kilometers of System Replaced Percentage of System Replaced Replacement Cycle Total Length of System (KM) Budget Kilometers of System Replaced Percentage of System Replaced Percentage of System Replaced |
| Year        | Road Reconstruction<br>Road Resurfacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water mains<br>Sewer - Sanitary                                                                                                                                                                                                   | Sewer - Storm                                                                                                                | Road Reconstruction                                                                   | Water mains                                                                                                      | Sewer - Sanitary Sewer - Storm                                                                                                                                                                                                                |

#### 6.3.2.1 Scenario 2 Background

Scenario 2 illustrates how the City of Sarnia can eliminate the current backlog in 15 years with the same funding available as scenario 1. The other major change in scenario 2 is how roads have been accounted for in the current deficit. Scenario 1 considers stand-alone road projects at the resurfacing cost of \$225.81 per metre. In scenario 2 the road cost for stand-alone projects has been calculated using the major rehabilitation cost including full curb and gutter repairs at \$590.20 per meter. Much of the road network in the current need is below the reconstruction point. Thus, to properly rehabilitate the road network, ideally major rehabilitation or full reconstruction should be done to achieve the desired service level. This scenario follows the "worst first" philosophy and therefore much more road reconstruction is done and rehabilitation funding is relatively low.

Table 33 Summary of Project Completion Scenario 2

| Asset Type                       | Length of<br>Work<br>(km) | Cost of Work (\$) | % Funding | Total %<br>System<br>Replaced | Average<br>Replacement<br>Cycle |
|----------------------------------|---------------------------|-------------------|-----------|-------------------------------|---------------------------------|
| Road<br>Reconstruction           | 48.09                     | \$77,763,928.53   | 32.00%    | 23.34%                        | 88.86                           |
| Watermain<br>Reconstruction      | 96.62                     | \$72,903,682.99   | 30.00%    | 19.48%                        | 103.44                          |
| Sanitary Sewer<br>Reconstruction | 52.93                     | \$55,892,823.63   | 23.00%    | 13.64%                        | 147.70                          |
| Storm Sewer<br>Reconstruction    | 34.89                     | \$36,451,841.50   | 15.00%    | 11.91%                        | 169.21                          |
| Road<br>Rehabilitation           | 54.37                     | \$25,350,000.00   |           |                               |                                 |
| Total                            | 286.89                    | \$268,362,276.65  | Average   | Replacement<br>Cycle          | 177.30                          |

To achieve the goal of eliminating the current linear asset deficit in 15 years a reallocation in funding was necessary. The watermain network has largest quantity in current need and therefore requires the greatest reallocation of funding. To accommodate the watermain needs, funding was transferred from road rehabilitation and storm sewers. Under this method the road network would be rehabilitated to a higher service level and the asset in greatest need (watermains) would receive a larger share of funding compared to scenario 1. But unlike scenario 1; Road, Sanitary, and Storm reconstruction are not shown as combined reconstruction projects. Approximately 35km would be combined reconstruction projects; however 92 km would be more costly individual

network projects. Although scenario 2 focuses on improving the watermain network which is significantly improved in the projection, over time it would significantly deteriorate the road network.

#### 6.3.2.2 Current Linear Asset Deficit for Scenario 2

The current linear asset deficit in scenario 2 is made up of the following costs.

**Table 34 Scenario 2 Current Linear Asset Deficit** 

| Asset Type          | Cost             |
|---------------------|------------------|
| Road Reconstrution  | \$46,103,406.34  |
| Road Rehabilitation | \$13,807,986.18  |
| Watermain           | \$43,340,309.10  |
| Sanitary Sewer      | \$32,919,227.27  |
| Storm Sewer         | \$21,489,004.10  |
| Total               | \$157,659,932.99 |

The current linear asset deficit is completely addressed by 2027 in scenario 2.

Table 35 Current Linear Asset Deficit Addressed in Scenario 2

| Year | Linear Asset     | Inflation      | Funding         | Linear Asset     |
|------|------------------|----------------|-----------------|------------------|
| rear | Opening Deficit  | IIIIation      | Fullding        | Closing Deficit  |
| 2013 | \$157,659,932.99 | \$2,964,050.76 | \$9,457,394.91  | \$151,166,588.84 |
| 2014 | \$151,166,588.84 | \$2,828,453.97 | \$9,743,890.31  | \$144,251,152.50 |
| 2015 | \$144,251,152.50 | \$2,680,253.47 | \$10,238,478.93 | \$136,692,927.05 |
| 2016 | \$136,692,927.05 | \$2,517,602.09 | \$10,812,822.63 | \$128,397,706.50 |
| 2017 | \$128,397,706.50 | \$2,347,052.32 | \$11,045,090.27 | \$119,699,668.56 |
| 2018 | \$119,699,668.56 | \$2,167,712.83 | \$11,314,027.08 | \$110,553,354.32 |
| 2019 | \$110,553,354.32 | \$1,977,542.15 | \$11,676,246.89 | \$100,854,649.57 |
| 2020 | \$100,854,649.57 | \$1,770,288.28 | \$12,340,235.54 | \$90,284,702.31  |
| 2021 | \$90,284,702.31  | \$1,544,623.32 | \$13,053,536.41 | \$78,775,789.22  |
| 2022 | \$78,775,789.22  | \$1,293,413.02 | \$14,105,138.10 | \$65,964,064.15  |
| 2023 | \$65,964,064.15  | \$1,032,432.25 | \$14,342,451.84 | \$52,654,044.55  |
| 2024 | \$52,654,044.55  | \$761,430.65   | \$14,582,511.86 | \$38,832,963.34  |
| 2025 | \$38,832,963.34  | \$494,864.90   | \$14,089,718.44 | \$25,238,109.79  |
| 2026 | \$25,238,109.79  | \$229,340.37   | \$13,771,091.53 | \$11,696,358.63  |
| 2027 | \$11,696,358.63  | \$0.00         | \$11,696,358.63 | \$0.00           |
| 2028 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |
| 2029 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |
| 2030 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |
| 2031 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |
| 2032 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |

#### 6.3.2.3 Overall Linear Asset Deficit for Scenario 2

The overall linear asset deficit is reduced to \$138,941,302 by the end of the projection. This reduces the deficit by \$18,718,630. The majority of the remaining overall deficit is the road network.

Table 36 Overall Linear Asset Deficit Addressed in Scenario 2

| Year    | Linear Asset     | Inflation      | Future Needs    | Funded          | Linear Asset     |
|---------|------------------|----------------|-----------------|-----------------|------------------|
| 1 0 0.1 | Opening Deficit  |                |                 |                 | Closing Deficit  |
| 2013    | \$157,659,932.99 | \$2,964,050.76 | \$1,699,240.51  | \$9,457,394.91  | \$152,865,829.35 |
| 2014    | \$152,865,829.35 | \$2,862,438.78 | \$3,177,298.74  | \$9,743,890.31  | \$149,161,676.56 |
| 2015    | \$149,161,676.56 | \$2,778,463.95 | \$4,925,691.21  | \$10,238,478.93 | \$146,627,352.79 |
| 2016    | \$146,627,352.79 | \$2,716,290.60 | \$5,241,811.88  | \$10,812,822.63 | \$143,772,632.64 |
| 2017    | \$143,772,632.64 | \$2,654,550.85 | \$6,049,770.24  | \$11,045,090.27 | \$141,431,863.46 |
| 2018    | \$141,431,863.46 | \$2,602,356.73 | \$8,471,763.73  | \$11,314,027.08 | \$141,191,956.85 |
| 2019    | \$141,191,956.85 | \$2,590,314.20 | \$10,681,863.23 | \$11,676,246.89 | \$142,787,887.38 |
| 2020    | \$142,787,887.38 | \$2,608,953.04 | \$12,054,936.97 | \$12,340,235.54 | \$145,111,541.85 |
| 2021    | \$145,111,541.85 | \$2,641,160.11 | \$15,100,473.12 | \$13,053,536.41 | \$149,799,638.67 |
| 2022    | \$149,799,638.67 | \$2,713,890.01 | \$14,234,469.14 | \$14,105,138.10 | \$152,642,859.72 |
| 2023    | \$152,642,859.72 | \$2,766,008.16 | \$18,204,222.64 | \$14,342,451.84 | \$159,270,638.67 |
| 2024    | \$159,270,638.67 | \$2,893,762.54 | \$16,994,322.71 | \$14,582,511.86 | \$164,576,212.05 |
| 2025    | \$164,576,212.05 | \$2,995,016.78 | \$14,521,821.89 | \$14,825,373.09 | \$167,267,677.64 |
| 2026    | \$167,267,677.64 | \$3,043,931.72 | \$14,645,153.51 | \$15,071,091.53 | \$169,885,671.34 |
| 2027    | \$169,885,671.34 | \$3,091,318.94 | \$9,590,760.19  | \$15,319,724.35 | \$167,248,026.12 |
| 2028    | \$167,248,026.12 | \$3,033,533.93 | \$12,216,162.05 | \$15,571,329.82 | \$166,926,392.27 |
| 2029    | \$166,926,392.27 | \$3,022,008.50 | \$11,003,852.07 | \$15,825,967.40 | \$165,126,285.44 |
| 2030    | \$165,126,285.44 | \$2,980,851.75 | \$5,377,642.83  | \$16,083,697.73 | \$157,401,082.29 |
| 2031    | \$157,401,082.29 | \$2,821,129.99 | \$4,462,042.82  | \$16,344,582.67 | \$148,339,672.43 |
| 2032    | \$148,339,672.43 | \$2,634,619.74 | \$4,575,695.46  | \$16,608,685.31 | \$138,941,302.33 |

### 6.3.2.4 Scenario 2 Replacement Life Cycle

The replacement cycle for watermains is drastically reduced due to the reallocation of funding in scenario 2. However, as shown in the following table, the replacement cycles for the other asset types are above the desired replacement cycle. The road network is critically underfunded in this scenario causing its replacement cycle to be twice its suggested length.

**Table 37 Scenario 2 Average Replacement Life Cycles** 

|                | Average<br>Replacement<br>Cycle | Expected<br>Life Cycle |
|----------------|---------------------------------|------------------------|
| Road           | 88.86                           | 35.00                  |
| Watermains     | 103.44                          | 100.00                 |
| Sanitary Sewer | 147.70                          | 100.00                 |
| Storm Sewer    | 169.21                          | 100.00                 |
| Average        | 127.30                          | 83.75                  |

### 6.3.3 Linear Asset Scenario 3

### **Table 38 Projected Project Completion Scenario 3**

| Year                                | Description                                                       | 2013           | 2014                          | 2015                   | 2016                          | 2017                   | 2018                                                        | 2019                                                        | 2020                   | 2021                                      | 2022                   |
|-------------------------------------|-------------------------------------------------------------------|----------------|-------------------------------|------------------------|-------------------------------|------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------|-------------------------------------------|------------------------|
| Total Le<br>Road Reconstruct Budget | Total Length of System (KM)                                       | 439            | 439                           | 439                    | 439                           | 439                    |                                                             | 439 439 439<br>\$5,060,488.66 \$5,144,399.01 \$5,324,875,37 | 439                    | 439 439 439 \$5.521,131.65 \$5.825.644.19 | 439                    |
| Kilomet<br>Road Resurfacing Budget  | Kilometers of System Replaced a Budget                            | 3.52           | 3.52                          | 3.54                   |                               | 3.50                   |                                                             | 3.46                                                        | 3.51                   | 3.57                                      | 3.69                   |
|                                     | Kilometers of System Replaced                                     | 2.40           | 2.40                          | 2.40                   | 2.40                          | 2.40                   |                                                             |                                                             | 2.56                   |                                           | 3.05                   |
|                                     | Percentage of System Replaced<br>Replacement Cycle                | 1.35%<br>74.20 | 1.35%<br>74.21                | 1.35%<br>73.93         | 1.35%<br>73.87                | 1.34%<br>74.37         | 1.34%<br>74.77                                              | 1.31%<br>76.19                                              | 1.38%<br>72.26         | 1.45%<br>68.78                            | 1.54%<br>65.10         |
|                                     | Total Length of System (KM)                                       | 496            | 496                           | 496                    | 496                           | 496                    | 496                                                         | 496                                                         | 496                    | 496                                       | 496                    |
| Watermains                          | Budget                                                            | \$4,352,218.47 | \$4,438,167.09                | \$4,556,543.68         | \$4,556,543.68 \$4,653,846.79 | \$4,693,527.08         | \$4,7                                                       | \$4,8                                                       | \$4,992,070.66         | \$5,1                                     | \$5,461,541.43         |
|                                     | Kilometers of System Replaced Percentage of System Replaced       | 7.06           | 7.06                          | 7.11                   | 7.12                          | 1.04                   | 6.98<br>1.41%                                               | 6.95<br>1.40%                                               | 7.05                   | 1.45%                                     | 1.50%                  |
|                                     | Replacement Cycle                                                 | 70.21          | 70.22                         | 69.77                  | 89.69                         | 70.47                  | 71.11                                                       | 71.35                                                       | 70.31                  | 69.17                                     | 66.86                  |
|                                     | Total Length of System (KM)                                       | 388            | 388                           | 388                    |                               | 388                    |                                                             |                                                             |                        | 388                                       | 388                    |
| Sewer - Sanitary Budget<br>Kilomet  | <ul> <li>Budget</li> <li>Kilometers of System Replaced</li> </ul> | \$3,336,700.83 | \$3,402,594.77                | \$3,493,350.15         | \$3,567,949.20                | \$3,598,370.76         | \$3,637,226.23<br>3.82                                      | \$3,697,536.79                                              | \$3,827,254.17         | \$3,968,313.37                            | \$4,187,181.76         |
|                                     | Percentage of System Replaced                                     | 1.00%          | 1.00%                         | 1.00%                  | 1.01%                         | 0.99%                  | 0.98%                                                       | 0.98%                                                       | 1.00%                  | 1.01%                                     | 1.05%                  |
|                                     | Replacement Cycle                                                 | 100.25         | 100.27                        | 99.62                  | 99.49                         | 100.62                 | 101.54                                                      | 101.88                                                      | 100.40                 | 98.76                                     | 95.47                  |
|                                     | Total Length of System (KM)                                       | 293            | 293                           | 293                    | 293                           | 293                    | 293                                                         | 293                                                         | 293                    | 293                                       | 293                    |
| Sewer - Storm                       | Budget                                                            | \$2,176,109.24 | \$2,219,083.55                | \$2,278,271.84         | \$2,326,923.39                | \$2,346,763.54         | \$2,3                                                       | \$2,4                                                       | \$2,4                  | \$2,588,030.46                            | \$2,730,770.71         |
|                                     | Kilometers of System Replaced                                     | 2.55           | 2.55                          | 2.57                   | 2.57                          | 2.54                   | 2.52                                                        | 2.51                                                        | 2.55                   | 2.59                                      | 2.68                   |
|                                     | Percentage of System Replaced Replacement Cycle                   | 0.87%          | 0.87%                         | 0.88%                  | 0.88%<br>113.98               | 0.87%                  | 0.86%                                                       | 0.86%<br>116 71                                             | 0.87%                  | 0.88%                                     | 109.37                 |
|                                     |                                                                   |                |                               |                        |                               |                        |                                                             |                                                             |                        |                                           |                        |
| Year                                | Description                                                       | 2023           | 2024                          | 2025                   | 2026                          | 2027                   | 2028                                                        | 2029                                                        | 2030                   | 2031                                      | 2032                   |
|                                     | Total Length of System (KM)                                       | 439            | 439                           | 439                    | 439                           | 439                    | 439                                                         | 439                                                         | 439                    | 439                                       | 439                    |
| Road ReconstructBudget              | of Budget                                                         | \$3,949,584.59 | \$3,949,584.59 \$3,994,403.80 | \$4,040,119.39         | \$4,086,749.29                | \$4,134,311.79         | \$4,040,119.39 \$4,086,749.29 \$4,134,311.79 \$4,182,825.54 | \$4,232,309.57 \$4,282,783.27                               | \$4,282,783.27         | \$4,334,266.45                            | \$4,386,779.30         |
| Kilomet                             | Kilometers of System Replaced                                     | 2.45           |                               | 2.41                   | 2.39                          | 2.37                   |                                                             |                                                             | 2.32                   | 2.30                                      | 2.28                   |
| Road Resuliacin                     | g Budget<br>Kilometers of System Replaced                         | \$2,000,000.00 | 92, 100,000.00                | 9.28                   | 94,300,000.00                 | 9.000,000.00<br>9.66   | 8.23                                                        | 8.39                                                        | \$4,700,000.00         | \$2,600,000.00<br>8,68                    | 8 82                   |
|                                     | Percentage of System Replaced                                     | 2.58%          | 2.62%                         | 2.66%                  | 2.70%                         | 2.74%                  | 2.41%                                                       | 2.44%                                                       | 2.47%                  | 2.50%                                     | 2.53%                  |
|                                     | Replacement Cycle                                                 | 38.78          | 38.13                         | 37.54                  | 36.99                         | 36.50                  | 41.49                                                       | 40.94                                                       | 40.44                  | 39.98                                     | 39.56                  |
|                                     | Total Length of System (KM)                                       | 496            | 496                           | 496                    | 496                           | 496                    | 496                                                         | 496                                                         | 496                    | 496                                       | 496                    |
| Watermains                          | Budget                                                            | \$3,702,735.55 | \$3,744,753.56                | \$3,787,611.93         | \$3,83                        | \$3,875,917.30         | \$3,9                                                       | \$3,96                                                      | \$4,015,109.32         | 4.80                                      | \$4,112,605.59         |
|                                     | Percentage of System Replaced                                     | 4.93<br>0.99%  | 4.09<br>0 99%                 | 4.65<br>0.98%          | 0.97%                         | 4.77<br>0.96%          | 4.73<br>0.95%                                               | 4.69<br>0.95%                                               | 4.63<br>0.94%          | 4.62<br>0.93%                             | 4.30<br>0.92%          |
|                                     | Replacement Cycle                                                 | 100.59         | 101.45                        | 102.31                 | 103.17                        | 104.02                 | 104.87                                                      | 105.72                                                      | 106.56                 | 107.40                                    | 108.24                 |
|                                     | Total Length of System (KM)                                       | 388            | 388                           | 388                    | 388                           | 388                    | 388                                                         | 388                                                         | 388                    | 388                                       | 388                    |
| Sewer - Sanitary                    |                                                                   | \$2,838,763.92 | \$2,870,977.73                | \$2,903,835.81         | \$2,937,351.05                | \$2,971,536.60         | \$3,0                                                       | \$3,0                                                       | \$3,0                  | 4.01                                      | \$3,152,997.62         |
|                                     | Kilometers of System Replaced                                     | 2.70           | 2.68                          | 2.66                   | 2.63                          | 2.61                   | 2.59                                                        | 2.57                                                        | 2.55                   | 2.53                                      | 2.51                   |
|                                     | Percentage of System Replaced<br>Replacement Cycle                | 0.70%          | 0.69%                         | 0.68%                  | 0.68%                         | 0.67% 148.53           | 0.67%                                                       | 0.66%<br>150.96                                             | 0.66%<br>152.16        | 0.65%<br>153.36                           | 0.65%                  |
|                                     | Total I anoth of Suctom (ICM)                                     | 202            | coc                           | coc                    | coc                           | 000                    | 200                                                         | 000                                                         | coc                    | 203                                       | 202                    |
|                                     | Total Length of System (KIM)                                      | 233            | 253                           | 233                    |                               | 233                    |                                                             | 233                                                         | 233                    | 5                                         | 293                    |
| Sewer - Storm                       | Budget<br>Kilometers of System Replaced                           | \$1,851,367.78 | \$1,872,376.78<br>1.77        | \$1,893,805.96<br>1.75 | \$1,915,663.73<br>1.74        | \$1,937,958.65<br>1.72 | 41,960,699.47                                               | 1,983,895.11                                                | \$2,007,554.66<br>1.68 | \$2,031,687.40<br>1.67                    | \$2,056,302.80<br>1.65 |
|                                     | Percentage of System Replaced                                     | 0.61%          | 0.60%                         | 0.60%                  | 0.59%                         | 0.59%                  | 0.58%                                                       | 0.58%                                                       | 0.57%                  | 0.57%                                     | 0.56%                  |
|                                     | Replacement Cycle                                                 | 164.55         | 165.96                        | 167.37                 | 168.76                        | 170.16                 | 171.55                                                      | 172.93                                                      | 174.31                 | 175.69                                    | 177.06                 |

### 6.3.3.1 Scenario 3 Background

Scenario 3 is an extension of scenario 2, except the current deficit is targeted to be fully addressed in 10 years by assuming outside funding of approximately 62 million dollars to further improve the City of Sarnia's service levels. Similar to scenario 2, scenario 3 adopts road major rehabilitation with full curb and gutter repairs at a cost of \$590.20 per meter to treat stand-alone road projects.

Total % Length of **Average** Work Cost of Work (\$) % Funding Replacement **Asset Type System** (km) Replaced Cycle Road 58.97 \$92,707,928.53 32.00% 39.43% 55.90 Reconstruction Watermain 118.49 \$86,913,682.99 30.00% 23.89% 87.17 Reconstruction Sanitary Sewer 64.91 \$66,633,823.63 23.00% 16.73% 124.48 Reconstruction Storm Sewer 42.79 \$43,456,841.50 15.00% 14.60% 142.60 Reconstruction Road 114.14 \$40,601,908.66 Rehabilitation Average Replacement Total 399.29 \$330,314,185.30 102.54 Cycle

**Table 39 Summary of Project Completion Scenario 3** 

To achieve the goal of eliminating the current deficit in 10 years, more funding needs to be allocated to the road and watermain network since their current need is significantly higher than sanitary and storm sewers network.

#### 6.3.3.2 Current Linear Asset Deficit for Scenario 3

The current linear asset deficit in this scenario is made up of the following costs.

Table 40 Scenario 3 Current Linear Asset Deficit

| Asset Type          | Cost             |
|---------------------|------------------|
| Road Reconstruction | \$46,103,406.34  |
| Road Resurfacing    | \$13,807,986.18  |
| Watermains          | \$43,340,309.10  |
| Sanitary Sewer      | \$32,919,227.27  |
| Storm Sewer         | \$21,489,004.10  |
| Total               | \$157,659,932.99 |

The current linear asset deficit is completly addressed in ten years by the end of year 2022 in this scenario.

Table 41 Current Linear Asset Deficit Addressed in Scenario 3

| Year | Linear Asset     | Inflation      | Funding         | Linear Asset     |  |  |
|------|------------------|----------------|-----------------|------------------|--|--|
| rear | Opening Deficit  | mation         | ranang          | Closing Deficit  |  |  |
| 2013 | \$157,659,932.99 | \$2,834,193.01 | \$15,950,282.37 | \$144,543,843.63 |  |  |
| 2014 | \$144,543,843.63 | \$2,565,564.16 | \$16,265,635.52 | \$130,843,772.27 |  |  |
| 2015 | \$130,843,772.27 | \$2,283,082.26 | \$16,689,659.05 | \$116,437,195.49 |  |  |
| 2016 | \$116,437,195.49 | \$1,987,863.38 | \$17,044,026.35 | \$101,381,032.52 |  |  |
| 2017 | \$101,381,032.52 | \$1,683,482.29 | \$17,206,918.06 | \$85,857,596.75  |  |  |
| 2018 | \$85,857,596.75  | \$1,369,010.11 | \$17,407,091.43 | \$69,819,515.43  |  |  |
| 2019 | \$69,819,515.43  | \$1,042,865.37 | \$17,676,246.89 | \$53,186,133.91  |  |  |
| 2020 | \$53,186,133.91  | \$696,917.97   | \$18,340,235.54 | \$35,542,816.34  |  |  |
| 2021 | \$35,542,816.34  | \$329,785.60   | \$19,053,536.41 | \$16,819,065.53  |  |  |
| 2022 | \$16,819,065.53  | \$0.00         | \$16,819,065.53 | \$0.00           |  |  |
| 2023 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2024 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2025 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2026 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2027 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2028 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2029 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2030 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2031 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |
| 2032 | \$0.00           | \$0.00         | \$0.00          | \$0.00           |  |  |

#### 6.3.3.3 Overall Linear Asset Deficit for Scenario 3

The overall linear asset deficit is reduced to \$56,102,435 by the end of the projection. This reduces the deficit by \$101,557,498. The majority of the remaining overall deficit is the road network.

Table 42 Overall Linear Asset Deficit Addressed in Scenario 3

| Year | Linear Asset<br>Opening Deficit | Inflation      | Future Needs                                       | Funded          | Funding Deficit | Assumed<br>Funding Total | Linear Asset<br>Closing Deficit |
|------|---------------------------------|----------------|----------------------------------------------------|-----------------|-----------------|--------------------------|---------------------------------|
| 2013 | \$157,659,932.99                | \$2,964,050.76 | \$1,699,240.51                                     | \$9,457,394.91  | \$6,492,887.46  | \$15,950,282.37          | \$146,372,941.89                |
| 2014 | \$146,372,941.89                | \$2,732,581.03 | \$3,177,298.74                                     | \$9,743,890.31  | \$6,521,745.21  | \$16,265,635.52          | \$136,017,186.13                |
| 2015 | \$136,017,186.13                | \$2,515,574.14 | \$4,925,691.21                                     | \$10,238,478.93 | \$6,451,180.12  | \$16,689,659.05          | \$126,768,792.43                |
| 2016 | \$126,768,792.43                | \$2,319,119.40 | \$5,241,811.88                                     | \$10,812,822.63 | \$6,231,203.72  | \$17,044,026.35          | \$117,285,697.36                |
| 2017 | \$117,285,697.36                | \$2,124,812.14 | \$6,049,770.24                                     | \$11,045,090.27 | \$6,161,827.79  | \$17,206,918.06          | \$108,253,361.69                |
| 2018 | \$108,253,361.69                | \$1,938,786.69 | \$8,471,763.73                                     | \$11,314,027.08 | \$6,093,064.35  | \$17,407,091.43          | \$101,256,820.69                |
| 2019 | \$101,256,820.69                | \$1,791,611.48 | \$10,681,863.23 \$11,676,246.89                    | \$11,676,246.89 | \$6,000,000,00  | \$17,676,246.89          | \$96,054,048.50                 |
| 2020 | \$96,054,048.50                 | \$1,674,276.26 | \$12,054,936.97                                    | \$12,340,235.54 | \$6,000,000,00  | \$18,340,235.54          | \$91,443,026.19                 |
| 2021 | \$91,443,026.19                 | \$1,567,789.80 | \$1,567,789.80   \$15,100,473.12   \$13,053,536.41 | \$13,053,536.41 | \$6,000,000,00  | \$19,053,536.41          | \$89,057,752.69                 |
| 2022 | \$89,057,752.69                 | \$1,499,052.29 | \$1,499,052.29   \$14,234,469.14   \$14,105,138.10 | \$14,105,138.10 | \$6,000,000,00  | \$20,105,138.10          | \$84,686,136.02                 |
| 2023 | \$84,686,136.02                 | \$1,406,873.68 | \$18,204,222.64                                    | \$14,342,451.84 | \$0.00          | \$14,342,451.84          | \$89,954,780.50                 |
| 2024 | \$89,954,780.50                 | \$1,507,445.37 | \$1,507,445.37   \$16,994,322.71   \$14,582,511.86 | \$14,582,511.86 | \$0.00          | \$14,582,511.86          | \$93,874,036.72                 |
| 2025 | \$93,874,036.72                 | \$1,580,973.27 | \$14,521,821.89 \$14,825,373.09                    | \$14,825,373.09 | \$0.00          | \$14,825,373.09          | \$95,151,458.80                 |
| 2026 | \$95,151,458.80                 | \$1,601,607.35 | \$1,601,607.35   \$14,645,153.51   \$15,071,091.53 | \$15,071,091.53 | \$0.00          | \$15,071,091.53          | \$96,327,128.12                 |
| 2027 | \$96,327,128.12                 | \$1,620,148.08 | \$9,590,760.19 \$15,319,724.35                     | \$15,319,724.35 | \$0.00          | \$15,319,724.35          | \$92,218,312.04                 |
| 2028 | \$92,218,312.04                 | \$1,532,939.64 | \$12,216,162.05                                    | \$15,571,329.82 | \$0.00          | \$15,571,329.82          | \$90,396,083.91                 |
| 2029 | \$90,396,083.91                 | \$1,491,402.33 | \$11,003,852.07 \$15,825,967.40                    | \$15,825,967.40 | \$0.00          | \$15,825,967.40          | \$87,065,370.91                 |
| 2030 | \$87,065,370.91                 | \$1,419,633.46 | \$5,377,642.83                                     | \$16,083,697.73 | \$0.00          | \$16,083,697.73          | \$77,778,949.47                 |
| 2031 | \$77,778,949.47                 | \$1,228,687.34 | \$4,462,042.82                                     | \$16,344,582.67 | \$0.00          | \$16,344,582.67          | \$67,125,096.96                 |
| 2032 | \$67,125,096.96                 | \$1,010,328.23 | \$4,575,695.46 \$16,608,685.31                     | \$16,608,685.31 | \$0.00          | \$16,608,685.31          | \$56,102,435.34                 |

### 6.3.3.4 Scenario 3 Replacement Life Cycle

Due to the external funding in this scenario the replacement life cycle for all assets is drastically reduced in the projection. The desired replacement cycle is achieved for watermain network in this scenario, but replacement cycle for the road, sanitary and storm sewer networks are still above the desired replacement cycle.

Table 43 Scenario 3 Asset Average Replacement Life Cycles

|                | Average<br>Replacement<br>Cycle | Expected<br>Life Cycle |
|----------------|---------------------------------|------------------------|
| Road           | 55.90                           | 35.00                  |
| Watermains     | 87.17                           | 100.00                 |
| Sanitary Sewer | 124.48                          | 100.00                 |
| Storm Sewer    | 142.60                          | 100.00                 |
| Average        | 102.54                          | 83.75                  |

#### 6.3.4 Linear Asset Scenario Conclusion

When comparing the scenarios it is critical to understand what impact each scenario has on the entire network as well as each individual network. Each network is a vital component to the City's infrastructure. The major focus of the City has been watermain replacement and combined sewer separation to eliminate combined sewer overflows to the St. Clair River and mitigate basement flooding. However the road network proved to be the most challenging due to the option of rehabilitation and the large cost of reconstruction. Although Scenario 3 would be preferred, it cannot be implemented without external funding therefore the focus will be on scenario 1 and 2.

In keeping the City's infrastructure focus in mind, it is recommended that scenario 1 be implemented. Scenario 1 focuses more on road network rehabilitation; this allows more of the road network to be upgraded at a lower overall cost. The road network has the shortest life cycle and costs more to replace on a per meter basis than any other network. As shown in the following figure, the road network is improved by 9,747 points compared to scenario 2 where the road network is improved by 6,453 points.

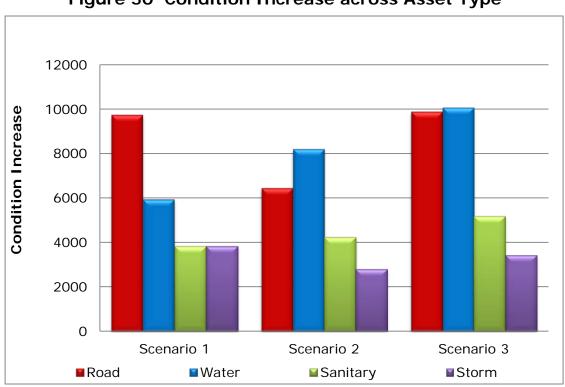



Figure 50 Condition Increase across Asset Type

The length of road network upgraded in scenario 1 is 186 km, versus 102 km in scenario 2. Combined projects are more cost effective than individual network projects. In scenario 1 approximately 48km of combined projects are completed compared to approximately 35km in scenario 2. The overall length of network upgraded is 351km for scenario 1 compared to 287km for scenario 2; a difference of 64km.

Table 44 Quantitiy of Work Breakdown in 3 Financial Scenarios

|                | Scena                  | rio 1                  | Scena               | rio 2               | Scena               | rio 3                  |
|----------------|------------------------|------------------------|---------------------|---------------------|---------------------|------------------------|
|                | Reconstruction<br>(km) | Rehabilitation<br>(km) | Reconstruction (km) | Rehabilitation (km) | Reconstruction (km) | Rehabilitation<br>(km) |
| Road           | 47.84                  | 137.67                 | 48.09               | 54.37               | 58.97               | 114.14                 |
| Watermains     | 69.98                  |                        | 96.62               |                     | 118.49              |                        |
| Sanitary Sewer | 47.84                  |                        | 52.93               |                     | 64.91               |                        |
| Storm Sewer    | 47.85                  |                        | 34.89               |                     | 42.79               |                        |

The Asset Management Planning process is driving a change in philosophy regarding capital improvement. The old philosophy of "worst first" is being replaced with a more proactive approach focused on rehabilitation based on the window of opportunity; as the saying goes, "A reconstruction today is a reconstruction tomorrow, rehabilitation today is a reconstruction tomorrow".

Therefore, the recommended Financial Scenario in this plan firmly sets the City of Sarnia on a proactive and fiscally responsible path.

#### 6.3.5 Optional Scenario

This scenario is an alternate approach to scenario 1 using the same current road need but, instead of considering future road need cost as rehabilitation cost, the full reconstruction cost has been considered in this scenario. As shown in the following table the total overall linear closing deficit went up to \$535,641,663.19 from the original deficit of \$126,129,725.15 shown in scenario 1. The City of Sarnia's practice is to resurface/ rehabilitate roads and not reconstruct until the buried infrastructure needs to be rebuilt. Due to the complexity of Asset Management Strategies and the high costs associated with roads, this scenario is being included in this plan to better compare with other plans.

Table 45 Overall Linear Asset Deficit Addressed in Optional Scenario

| Year | Linear Asset<br>Opening Deficit | Inflation       | Future Need     | Funded          | Linear Asset<br>Closing Deficit |
|------|---------------------------------|-----------------|-----------------|-----------------|---------------------------------|
| 2013 | \$149,038,108.81                | \$2,791,614.28  | \$3,604,276.61  | \$9,457,394.91  | \$145,976,604.79                |
| 2014 | \$145,976,604.79                | \$2,724,654.29  | \$9,906,001.09  | \$9,743,890.31  | \$148,863,369.86                |
| 2015 | \$148,863,369.86                | \$2,772,497.82  | \$15,552,389.74 | \$10,238,478.93 | \$156,949,778.49                |
| 2016 | \$156,949,778.49                | \$2,922,739.12  | \$15,229,247.61 | \$10,812,822.63 | \$164,288,942.58                |
| 2017 | \$164,288,942.58                | \$3,064,877.05  | \$17,516,859.31 | \$11,045,090.27 | \$173,825,588.67                |
| 2018 | \$173,825,588.67                | \$3,250,231.23  | \$20,839,632.29 | \$11,314,027.08 | \$186,601,425.11                |
| 2019 | \$186,601,425.11                | \$3,498,503.56  | \$30,048,325.31 | \$11,676,246.89 | \$208,472,007.10                |
| 2020 | \$208,472,007.10                | \$3,922,635.43  | \$36,811,586.08 | \$12,340,235.54 | \$236,865,993.06                |
| 2021 | \$236,865,993.06                | \$4,476,249.13  | \$43,082,302.62 | \$13,053,536.41 | \$271,371,008.40                |
| 2022 | \$271,371,008.40                | \$5,145,317.41  | \$41,907,620.51 | \$14,105,138.10 | \$304,318,808.22                |
| 2023 | \$304,318,808.22                | \$5,799,527.13  | \$57,670,930.15 | \$14,342,451.84 | \$353,446,813.66                |
| 2024 | \$353,446,813.66                | \$6,777,286.04  | \$54,595,022.24 | \$14,582,511.86 | \$400,236,610.06                |
| 2025 | \$400,236,610.06                | \$7,708,224.74  | \$41,281,298.53 | \$14,825,373.09 | \$434,400,760.25                |
| 2026 | \$434,400,760.25                | \$8,386,593.37  | \$38,279,524.12 | \$15,071,091.53 | \$465,995,786.21                |
| 2027 | \$465,995,786.21                | \$9,013,521.24  | \$21,086,367.61 | \$15,319,724.35 | \$480,775,950.72                |
| 2028 | \$480,775,950.72                | \$9,304,092.42  | \$35,479,764.09 | \$15,571,329.82 | \$509,988,477.40                |
| 2029 | \$509,988,477.40                | \$9,883,250.20  | \$29,560,157.74 | \$15,825,967.40 | \$533,605,917.95                |
| 2030 | \$533,605,917.95                | \$10,350,444.40 | \$5,424,821.86  | \$16,083,697.73 | \$533,297,486.49                |
| 2031 | \$533,297,486.49                | \$10,339,058.08 | \$7,248,871.10  | \$16,344,582.67 | \$534,540,832.99                |
| 2032 | \$534,540,832.99                | \$10,358,642.95 | \$7,350,872.56  | \$16,608,685.31 | \$535,641,663.19                |

#### 6.4 Non-Linear Assets

The current need for most of the Pump Station and Wastewater Treatment Facilities projects were identified as part of the Wastewater Master Plan study by Stantec Consulting. The top projects identified were Bedford Pump Station replacement and Bright's Grove Sewage Lagoons.

Most of the future need for pump stations was identified in the City's pump station assessment carried out by R. V. Anderson in 2009. Historically it has been the City's focus to upgrade electrical and pump components of the pump station to maximise the service life. Therefore, only these components have been included in this plan.

Future need for Water Pollution Control Centre was based on the City's 10-year capital plan compiled by City staff.

The bridge condition and future needs were in the bridge inspection report carried out by Engineered Management Systems in 2012 in accordance with Ontario structure inspection manual. The following table illustrates the prior year's actual expenditures for non-linear assets.

**Table 46 Prior Years Actual Non-Linear Expenditures** 

| Asset Type   | Description                      | 2009      | 2010        | 2011        | 2012      |
|--------------|----------------------------------|-----------|-------------|-------------|-----------|
| Bridges      |                                  |           |             |             |           |
|              | Donohue Bridge North Bound Lanes |           | \$3,601,581 |             |           |
| Pump Statio  | ns                               |           |             |             |           |
|              | Devine Street Pumping Station    |           |             | \$8,988,928 |           |
|              | Business Park PS                 |           |             | \$645,800   |           |
| Water Pollut | ion Control Centre               |           |             |             |           |
|              | New Raw Sewage Pumps             | \$242,112 |             |             |           |
|              | Clarifier Rehabilitation         |           | \$288,565   |             | \$181,239 |
|              | New VFD's for Blowers            |           |             | \$230,973   |           |
|              | New Controls for Scada System    |           |             | \$154,602   |           |

December 16, 2013

**Table 47 Projected Project Completion Pump Stations** 

| Station<br>ID | Pump Station               | Condition | 2013    | 2014   | 2015    | 2016  | 2017   | 2018   | 2019 | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026 | 2027 | 2028   | 2029          | 2030   | 2031 | 2032   |
|---------------|----------------------------|-----------|---------|--------|---------|-------|--------|--------|------|--------|--------|--------|--------|--------|--------|------|------|--------|---------------|--------|------|--------|
| 33            | CNR Tracks at Bedford      | 0         |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 41            | Green Street               | 0         |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 35            | Murphy Road at 402         | 0         |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 18            | Giffel Road                | 11        | 10,000  |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 6             | East St at Maple           | 12        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 1             | Holland Street             | 14        | 20,000  |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        | 20,000        |        |      |        |
| 2             | Briarfield                 | 14        | 10,000  |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        | 20,000        |        |      |        |
| 13            | McCaw                      | 17        | 20,000  |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 14            | Rosedale                   | 21        | 10,000  |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        | 20,000        |        |      |        |
| 8             | Errol Road                 | 23        |         |        |         |       |        | 15,000 |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 9             | Exmouth West of Indian     | 25        |         |        | 75,000  |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 17            | Mayfair                    | 26        |         |        |         |       |        |        |      |        |        |        |        |        | 20,000 |      |      |        |               |        |      |        |
| 16            | Talfourd Street            | 28        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 5             | East St at Huey's          | 29        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 10            | Forsyth                    | 34        | 10,000  |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      | 10,000 |
| 15            | Scott Road                 | 35        | 20,000  | 15,000 |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 32            | Exmouth St. (Lambton Mall) | 36        | 20,000  |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 12            | Lecaron                    | 36        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 3             | Clifford                   | 37        |         |        |         |       | 10,000 | 20,000 |      |        |        |        |        |        |        |      |      |        | Leg           | end    |      |        |
| 28            | 1801 London @ Blackwell    | 39        | 20,000  |        |         |       | 15,000 |        |      |        |        |        |        |        |        |      |      | Impr   | ovement       |        |      |        |
| 44            | Chippewa Park              | 40        | 20,000  |        | 10,000  |       |        |        |      |        |        |        |        |        |        |      |      | Pump   | os            |        |      |        |
| 29            | London Line at Briarwood   | 40        | 10,000  |        |         |       | 15,000 |        |      |        |        |        |        |        |        |      |      | Elect  | rical         |        |      |        |
| 37            | Cathcart at Rutherglen     | 42        | 20,000  |        |         | 5,000 |        |        |      |        |        |        |        |        |        |      |      | Gene   | erator        |        |      |        |
| 7             | Elrick at Vye              | 42        |         |        |         |       |        | 20,000 |      |        |        |        |        |        |        |      |      | Sa-al- |               |        |      |        |
| 30            | Blackwell @ Sim's          | 42        | 10,000  |        |         |       | 15,000 |        |      |        |        |        |        |        |        |      |      | Statio |               |        |      |        |
| 24            | River Road                 | 45        | 10,000  |        |         |       |        | 10,000 |      |        |        |        |        |        |        |      |      |        | Rebuilt       |        |      |        |
| 20            | Tashmoo Ave (North)        | 49        | 10,000  |        |         |       |        |        |      |        |        |        |        |        | 10,000 |      |      | 10 06  | e Decomission | onea   |      |        |
|               | Sandy Lane                 | 49        | 20,000  |        |         |       |        |        |      |        |        |        |        |        | 25,000 |      |      |        |               |        |      |        |
| 31            | Airport Road North of 402  | 51        | 20,000  |        |         |       | 10,000 |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 36            | 1642 Murphy Road           | 53        |         |        |         |       |        |        |      | 20,000 |        |        |        |        |        |      |      |        |               |        |      | 20,000 |
|               | Penhuron Lane (Hamilton)   | 54        | 20,000  |        | 10,000  |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 25            | 161 Nelson Street          | 54        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 34            | Plank Road at Indian Road  | 57        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 46            | Rapids Parkway             | 58        |         |        |         |       |        |        |      |        | 15,000 |        |        |        |        |      |      |        |               |        |      |        |
|               | Plain Lane                 | 58        | 10,000  |        |         |       |        |        |      |        |        |        |        |        | 10,000 |      |      |        |               |        |      |        |
| 22            | Berkshire Road             | 58        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 26            | 1350 Plank                 | 60        |         |        |         |       |        |        |      | 20,000 |        |        |        |        |        |      |      |        |               |        |      | 15,000 |
| 27            | 1569 London Line( Lou's)   | 62        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               | 20,000 |      |        |
| 11            | Lasalle                    | 65        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 39            | Kaymar                     | 67        | 15,000  |        | 5,000   |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 40            | Huronview (Lakeshore)      | 67        | 15,000  |        | 10,000  |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 47            | Devine Street              | 72        |         |        |         |       |        |        |      |        |        |        |        |        |        |      |      |        |               |        |      |        |
| 4             | ARI                        | 73        |         |        |         |       |        |        |      |        |        |        | 10,000 |        |        |      |      |        |               |        |      | 15,000 |
| 43            | 1264 Tashmoo (South)       | 73        |         |        |         |       |        |        |      |        |        |        | 10,000 |        |        |      |      |        |               |        |      | 10,000 |
|               | Michigan Avenue            | 74        |         |        |         |       |        |        |      |        |        | 15,000 |        |        |        |      |      |        |               |        |      |        |
|               | Heritage Park              | 76        |         |        |         |       |        |        |      |        |        | 15,000 |        |        |        |      |      |        |               |        |      |        |
|               | Augusta Drive              | 76        |         |        |         |       |        |        |      |        |        |        |        |        | 10,000 |      |      |        |               |        |      |        |
|               | 5960 Blackwell Side Road   | 76        |         |        |         |       |        |        |      | 15,000 |        |        |        |        |        |      |      |        |               |        |      |        |
|               | London Rd Industrial Park  | 77        |         |        |         |       |        |        |      |        |        |        |        |        | 20,000 |      |      |        |               |        |      |        |
|               | Stone Hedge Park           | 84        |         |        |         |       |        |        |      |        |        |        |        | 15,000 |        |      |      |        |               |        |      |        |
|               | Total Future Need          |           | 320,000 | 15,000 | 110,000 | 5,000 | 65,000 | 65,000 | -    | 55,000 | 15,000 | 30,000 | 20,000 | -      | 95,000 | -    | -    | -      | 60,000        | 20,000 | -    | 70,000 |

**Table 48 Projected Project Completion Wastewater Treatment Plant** 

| Components of WPCC              | Category   | Condition<br>Score | 2013    | 2014    | 2015    | 2016    | 2017    | 2018      | 2019    | 2020    | 2021    | 2022      | 2023    | 2024    | 2025    | 2026    | 2027    | 2028    | 2029    | 2030    | 2031    | 2032    |
|---------------------------------|------------|--------------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| ks                              |            |                    |         |         |         |         |         |           |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
| ο̈́                             | Process    | 64                 |         | 170,000 | 240,000 |         | 90,000  |           |         |         |         |           |         | 170,000 | 240,000 |         | 90,000  |         |         |         |         |         |
| Head Works                      | Structural | 46                 |         | 40,000  | 100,000 | 100,000 |         |           |         | 100,000 |         |           |         | 40,000  |         |         |         |         |         |         |         |         |
| He                              | Equipment  | 48                 |         | 120,000 | 200,000 |         |         |           | 200,000 | 90,000  |         |           |         | 120,000 |         |         |         |         | 200,000 |         |         |         |
| val                             |            |                    |         |         |         |         |         |           |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
| e e                             | Process    | 80                 |         |         | 50,000  | 90,000  | 40,000  |           |         |         |         |           |         |         | 50,000  | 90,000  | 40,000  |         |         |         |         |         |
| . Re                            | Structural | 46                 |         |         |         |         | 80,000  |           |         |         |         |           |         |         |         |         | 80,000  |         |         |         |         |         |
| Grit Removal                    | Equipment  | 48                 |         |         |         |         |         |           | 40,000  | 40,000  | 40,000  |           |         |         |         |         |         |         | 40,000  | 40,000  | 40,000  |         |
| > 2                             | Process    | 68                 | 110,000 | 40,000  |         | 100,000 | 100,000 |           | 60,000  | 60,000  |         |           | 110,000 | 40,000  |         | 100,000 | 100,000 |         | 60,000  | 60,000  |         |         |
| Primary<br>Clarifiers           |            |                    | 110,000 |         | 257,000 | 100,000 |         | 35 000    |         |         |         | 150,000   | 110,000 |         | 257 000 | 100,000 |         | 35 000  |         |         |         | 150,000 |
| Prir<br>Slari                   | Structural | 60                 | 15.000  | 257,000 | 257,000 |         | 35,000  | 35,000    | 35,000  | 35,000  |         |           | 15.000  | 257,000 | 257,000 |         | 35,000  | 35,000  | 35,000  | 35,000  |         | 150,000 |
|                                 | Equipment  | 68                 | 15,000  |         |         |         |         |           |         |         |         | 100,000   | 15,000  |         |         |         |         |         |         |         |         | 100,000 |
| E .                             | Process    | 68                 |         |         |         | 78,000  | 78,000  | 88,000    | 88,000  |         |         |           |         |         |         | 78,000  | 78,000  | 88,000  | 88,000  |         |         |         |
| ätic                            | Structural | 87                 |         |         |         | 70,000  | 70,000  | 55,555    | 55,555  |         |         |           |         |         |         | 70,000  | 70,000  | 55,555  | 33,000  |         |         |         |
| Aeration                        | Equipment  | 56                 |         |         |         | 8,000   | 100,000 | 500,000   |         |         |         |           |         |         |         | 8,000   | 100,000 | 500,000 |         |         |         |         |
| _                               | _          |                    |         |         |         |         |         |           |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
| dary<br>ers                     | Process    | 64                 |         | 52,000  | 52,000  | 52,000  | 112,000 | 150,000   | 160,000 | 160,000 | 100,000 |           |         | 52,000  | 52,000  | 52,000  | 112,000 | 150,000 | 160,000 | 160,000 | 100,000 |         |
| rifi                            | Structural | 87                 | 600,000 |         |         |         | 35,000  | 35,000    | 35,000  |         |         |           |         |         |         |         | 35,000  | 35,000  | 35,000  |         |         |         |
| Secondary<br>Clarifiers         | Equipment  | 48                 |         |         |         | 70,000  |         |           |         |         |         |           |         |         |         | 70,000  |         |         |         |         |         |         |
| e t                             |            |                    |         |         |         |         |         |           |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
| /joj                            | Process    | 48                 | 12,000  | 12,000  |         | 46,000  | 30,000  | 16,000    |         | 18,000  |         |           | 12,000  | 12,000  |         | 46,000  | 30,000  | 16,000  |         | 18,000  |         |         |
| Ultraviolet                     | Structural | 87                 |         |         |         |         |         |           |         |         |         | 800,000   |         |         |         |         |         |         |         |         |         |         |
|                                 | Equipment  | 48                 |         |         |         |         |         |           |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
| Sludge Storage<br>and Treatment |            | F.C.               |         | 20.000  | 20.000  | 60.000  | 60.000  | 00.000    |         |         |         |           |         | 20.000  | 20.000  | 60.000  | 60.000  | 00.000  |         |         |         |         |
| Sto                             | Process    | 56                 |         | 30,000  | 30,000  | 60,000  | 60,000  | 90,000    | .=      |         |         |           |         | 30,000  | 30,000  | 60,000  | 60,000  | 90,000  |         |         |         |         |
| ge .                            | Structural | 60                 |         |         |         | 150,000 |         | 150,000   | 150,000 | 180,000 |         |           |         |         |         |         |         |         |         |         |         |         |
| Slud                            | Equipment  | 48                 | 120,000 | 120,000 |         |         |         |           |         |         |         |           | 120,000 | 120,000 |         |         |         |         |         |         |         |         |
| Total Futur                     | e Need     |                    | 857,000 | 841,000 | 929,000 | 754,000 | 760,000 | 1,064,000 | 768,000 | 683,000 | 140,000 | 1,050,000 | 257,000 | 841,000 | 629,000 | 504,000 | 760,000 | 914,000 | 618,000 | 313,000 | 140,000 | 250,000 |

**Table 49 Projected Project Completion Bridges** 

| Structure ID   | Bridge Name                             | Condition<br>Index (BCI) | 2013 | 2014 | 2015 | 2016 | 2017    | 2018      | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025      | 2026 | 2027      | 2028      | 2029      | 2030 | 2031      | 2032 |
|----------------|-----------------------------------------|--------------------------|------|------|------|------|---------|-----------|------|------|------|------|------|------|-----------|------|-----------|-----------|-----------|------|-----------|------|
| 000260         | Telfer Road                             | 0                        |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000270         | Waterworks Road                         | 0                        |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000280         | Brigden Road                            | 0                        |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000310         | Old Lakeshore Road Over Cull Drain      | 0                        |      |      |      |      | 600,000 |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000200         | Blackwell Sideroad                      | 27                       |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000320         | Vidal Street Walkway                    | 39.6                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000160-3-3     | Donohue Bridge (North Structure)        | 43.3                     |      |      |      |      |         | 6,000,000 |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000230         | Confederation Line                      | 47.6                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000160-1-3     | Donohue Bridge (South Structure)        | 59.3                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000090         | Perch Creek Bridge                      | 60.9                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      | 723,000   |           |           |      |           |      |
| 000160-2-3     | Donohue Bridge (Centre Structure)       | 72.5                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000060         | Perch Creek Bridge                      | 76.7                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      | 3,420,000 |      |
| 000070         | Jackson Road Bridge                     | 79.3                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           | 1,665,000 |      |           |      |
| 000150         | Kenny Bridge                            | 79.6                     |      |      |      |      |         |           |      |      |      |      |      |      | 1,130,000 |      |           |           |           |      |           |      |
| 000040         | Michigan Avenue Bridge                  | 79.8                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           | 1,530,000 |           |      |           |      |
| 000300         | McGregor Sideroad Over Cole Drain       | 82.9                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| ロカロノラロ         | Confederation Line over Waddel<br>Creek | 85.1                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
|                | Perch Creek Bridge                      | 90.8                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      | 448,000   |      |
| 000180         | CSX Overpass                            | 91.5                     |      |      |      |      |         |           |      |      |      |      |      |      | 2,400,000 |      |           |           |           |      |           |      |
| 000030         | Cow Creek Bridge                        | 92.1                     |      |      |      |      |         |           |      |      |      |      |      |      | 354,000   |      |           |           |           |      |           |      |
| 000020         | Perch Creek Bridge                      | 92.4                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      | 363,000   |           |           |      |           |      |
| 000100         | Scott Road Bridge                       | 96.3                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000010         | Cow Creek Bridge                        | 97.5                     |      |      |      |      |         |           |      |      |      |      |      |      | 135,000   |      |           |           |           |      |           |      |
| 1(1(1(1)2/1(1) | Confederation Line over Perch<br>Creek  | 98.7                     |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
|                | Scott Road Culvert                      | 100                      |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000190         | Michigan Road                           | 100                      |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000210         | Finch Drive                             | 100                      |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000220         | Wellington Street                       | 100                      |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
| 000290         | Marshall Line                           | 100                      |      |      |      |      |         |           |      |      |      |      |      |      |           |      |           |           |           |      |           |      |
|                | Total Future Need                       |                          | -    | -    | -    | -    | 600,000 | 6,000,000 | -    | -    | -    | -    | -    | -    | 4,019,000 | -    | 1,086,000 | 1,530,000 | 1,665,000 | -    | 3,868,000 | -    |

The following tables illustrate the funding available and the opening and closing deficit for each non-linear asset. The opening deficit for pump stations and wastewater treatment facilities consist of the top two identified projects in the plan; being Bright's Grove Waste Water Treatment Facility project and Bedford and Murphy Road Pump Stations project. The City is considering several alternate funding approaches to address these needs, as currently the City does not have the resources to fund these projects.

**Table 50 Current Pump Station Deficit** 

| Year | Opening Pump<br>Station Deficit | Future Need | Funding | Closing Pump Station Deficit |
|------|---------------------------------|-------------|---------|------------------------------|
| 2013 | 37,000,000                      | 320,000     | 800,000 | 36,520,000                   |
| 2013 | 36,520,000                      | 15,000      | 800,000 | 35,735,000                   |
| 2014 | 35,735,000                      | 110,000     | 800,000 | 35,045,000                   |
| 2015 | 35,045,000                      | ,           | 800,000 | 34,250,000                   |
|      |                                 | 5,000       |         |                              |
| 2017 | 34,250,000                      | 65,000      | 800,000 | 33,515,000                   |
| 2018 | 33,515,000                      | 65,000      | 800,000 | 32,780,000                   |
| 2019 | 32,780,000                      | -           | 800,000 | 31,980,000                   |
| 2020 | 31,980,000                      | 55,000      | 800,000 | 31,235,000                   |
| 2021 | 31,235,000                      | 15,000      | 800,000 | 30,450,000                   |
| 2022 | 30,450,000                      | 30,000      | 800,000 | 29,680,000                   |
| 2023 | 29,680,000                      | 20,000      | 800,000 | 28,900,000                   |
| 2024 | 28,900,000                      | 15,000      | 800,000 | 28,115,000                   |
| 2025 | 28,115,000                      | 95,000      | 800,000 | 27,410,000                   |
| 2026 | 27,410,000                      | -           | 800,000 | 26,610,000                   |
| 2027 | 26,610,000                      | -           | 800,000 | 25,810,000                   |
| 2028 | 25,810,000                      | -           | 800,000 | 25,010,000                   |
| 2029 | 25,010,000                      | 60,000      | 800,000 | 24,270,000                   |
| 2030 | 24,270,000                      | 20,000      | 800,000 | 23,490,000                   |
| 2031 | 23,490,000                      | -           | 800,000 | 22,690,000                   |
| 2032 | 22,690,000                      | 70,000      | 800,000 | 21,960,000                   |

**Table 51 Current Wastewater Treatment Facilities Deficit** 

| Year | Opening WPCC<br>Deficit | Future Need | Funding   | Closing WPCC<br>Deficit |
|------|-------------------------|-------------|-----------|-------------------------|
| 2013 | 8,300,000               | 857,000     | 1,000,000 | 8,157,000               |
| 2014 | 8,157,000               | 841,000     | 1,000,000 | 7,998,000               |
| 2015 | 7,998,000               | 929,000     | 1,000,000 | 7,927,000               |
| 2016 | 7,927,000               | 754,000     | 1,000,000 | 7,681,000               |
| 2017 | 7,681,000               | 760,000     | 1,000,000 | 7,441,000               |
| 2018 | 7,441,000               | 1,064,000   | 1,000,000 | 7,505,000               |
| 2019 | 7,505,000               | 768,000     | 1,000,000 | 7,273,000               |
| 2020 | 7,273,000               | 683,000     | 1,000,000 | 6,956,000               |
| 2021 | 6,956,000               | 140,000     | 1,000,000 | 6,096,000               |
| 2022 | 6,096,000               | 1,050,000   | 1,000,000 | 6,146,000               |
| 2023 | 6,146,000               | 257,000     | 1,000,000 | 5,403,000               |
| 2024 | 5,403,000               | 841,000     | 1,000,000 | 5,244,000               |
| 2025 | 5,244,000               | 629,000     | 1,000,000 | 4,873,000               |
| 2026 | 4,873,000               | 504,000     | 1,000,000 | 4,377,000               |
| 2027 | 4,377,000               | 760,000     | 1,000,000 | 4,137,000               |
| 2028 | 4,137,000               | 914,000     | 1,000,000 | 4,051,000               |
| 2029 | 4,051,000               | 618,000     | 1,000,000 | 3,669,000               |
| 2030 | 3,669,000               | 313,000     | 1,000,000 | 2,982,000               |
| 2031 | 2,982,000               | 140,000     | 1,000,000 | 2,122,000               |
| 2032 | 2,122,000               | 250,000     | 1,000,000 | 1,372,000               |

**Table 52 Current Bridge Deficit** 

| Year | Opening Bridge<br>Deficit | Future Need | Funding | Closing Bridge<br>Deficit |
|------|---------------------------|-------------|---------|---------------------------|
| 2013 | 2,469,785                 | -           | 200,000 | 2,269,785                 |
| 2014 | 2,269,785                 | -           | 200,000 | 2,069,785                 |
| 2015 | 2,069,785                 | -           | 200,000 | 1,869,785                 |
| 2016 | 1,869,785                 | -           | 200,000 | 1,669,785                 |
| 2017 | 1,669,785                 | 600,000     | 200,000 | 2,069,785                 |
| 2018 | 2,069,785                 | 6,000,000   | 200,000 | 7,869,785                 |
| 2019 | 7,869,785                 | -           | 200,000 | 7,669,785                 |
| 2020 | 7,669,785                 | -           | 200,000 | 7,469,785                 |
| 2021 | 7,469,785                 | -           | 200,000 | 7,269,785                 |
| 2022 | 7,269,785                 | -           | 200,000 | 7,069,785                 |
| 2023 | 7,069,785                 | -           | 200,000 | 6,869,785                 |
| 2024 | 6,869,785                 | -           | 200,000 | 6,669,785                 |
| 2025 | 6,669,785                 | 4,019,000   | 200,000 | 10,488,785                |
| 2026 | 10,488,785                | -           | 200,000 | 10,288,785                |
| 2027 | 10,288,785                | 1,086,000   | 200,000 | 11,174,785                |
| 2028 | 11,174,785                | 1,530,000   | 200,000 | 12,504,785                |
| 2029 | 12,504,785                | 1,665,000   | 200,000 | 13,969,785                |
| 2030 | 13,969,785                | -           | 200,000 | 13,769,785                |
| 2031 | 13,769,785                | 3,868,000   | 200,000 | 17,437,785                |
| 2032 | 17,437,785                | -           | 200,000 | 17,237,785                |

# 7. Recommendations

The following table represents the top five priority projects across the asset types identified based on risk analysis.

Table 53 Top Identified Priority Projects across Asset Type

| Rank | Project                                                                     | Consequence of<br>Failure Index<br>(0 to 10) | Potential of<br>Failure<br>(0 to 10) | Overall Index<br>(consequence x<br>failure) | Comments                                                                           | Estimated<br>Cost |
|------|-----------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------|-------------------|
| 1    | Bright's Grove<br>Wastewater<br>Treatment<br>Facility                       | 6.97                                         | 10                                   | 69.7                                        | Includes upgrades to Green Street Pump Station and Forcemain                       | \$11,000,000      |
| 2    | Bedford and<br>Murphy Road<br>Pump Stations                                 | 7.48                                         | 7.5                                  | 56.1                                        | Includes<br>forcemains,<br>associated<br>sewers and<br>WPCC upgrades               | \$34,300,000      |
| 3    | Exmouth and<br>Devine Drainage<br>Areas<br>Road, Water and<br>Sewer Project | 4.91                                         | 8.4                                  | 41.24                                       | Combined<br>Sewer<br>Separation<br>Project Areas                                   | \$34,411,803      |
| 4    | Donohue Bridge                                                              | 6.76                                         | 5.67                                 | 38.33                                       | Substructure<br>Rehabilitation                                                     | \$2,469,785       |
| 5    | Watermain Only<br>Project                                                   | 5.66                                         | 5.36                                 | 30.34                                       | Coronation Ln<br>Area, Copland Rd,<br>Rosedale Ave,<br>Oldham Pl and<br>Exmouth St | \$8,202,289       |

While the Bedford, Murphy Road Pump Stations and Bright's Grove Wastewater Treatment Facility along with Green Street Pump Station (total cost \$45,300,000) is considered one sewer capacity upgrade project by the City, due to different risks associated with these projects they have been separated in this plan.

The construction/upgrade of the Bright's Grove Wastewater Treatment Facility and upgrade of the existing Green Street Pump Station was identified as a top priority project due to capacity constraints. The existing sewage lagoons are operating at close to full capacity with no discharge capable during winter months, which limits new development and causes environmental concerns.

The Bedford Pump Station was also identified through modelling as a top priority project. The Bedford Pumping Station is one of the largest pumping stations in the City of Sarnia. It receives the flow from 23 other pumping stations, which is all the flow east of Murphy Road (excluding Bright's Grove). There are multiple issues with the Bedford Pumping Station including capacity constraints, operational problems, economic development and future growth concerns.

The top identified Road, Water and Sewer project are the Exmouth and Devine Drainage Areas. Both these areas are older sections of the city containing combined sewers and aged linear infrastructure that is due for replacement.

Donohue Bridge is an ongoing project started in 2010. The Northbound lanes are scheduled for a full deck replacement in 2018.

The top identified Watermain only project is the Copland Rd, Rosedale Ave, Oldham Pl and Exmouth St area. These watermains have been identified as having low pressure and fire flow issues, and a high number of watermain breaks.

# Appendix: A

# **Priority Listings of Linear Infrastructures**

# **Road Only Priority Listing Top 50 Sections**

| Dud - uda .         |            |                      |                       |                          |        |       |          | T                 |             |
|---------------------|------------|----------------------|-----------------------|--------------------------|--------|-------|----------|-------------------|-------------|
| Priority<br>Listing | Section ID | Street               | From                  | То                       | Length | Width | 2013 PCI | Treatment<br>Text | Cost (\$)   |
| 1                   | 0000RD2464 | Errol Road East      | Windemere Crescent    | McCrie Street            | 83.8   | 12.2  | 20       | Reconstruct       | \$145,124   |
| 2                   | 0000RD3164 | Hamilton Road        | Kenwick St. (N. side) | East to Kenwick Street   | 37.4   | 9.8   | 20       | Reconstruct       | \$52,114    |
| 3                   | 0000RD3165 | Hamilton Road        | Wildwood Drive        | Kenwick Street           | 98.8   | 11.0  | 20       | Reconstruct       | \$154,354   |
| 4                   | 0000RD0308 | Lougar Avenue        | Evett Street          | Roper Street             | 597.9  | 11.0  | 20       | Reconstruct       | \$933,934   |
| 5                   | 0000RD2520 | Lougar Avenue        | Roper Street          | west end                 | 247.6  | 11.0  | 20       | Reconstruct       | \$386,808   |
| 6                   | 0000RD1821 | Mackenzie Street N.  | Penrose Street        | London Road              | 114.7  | 9.0   | 20       | Reconstruct       | \$146,544   |
| 7                   | 0000RD1874 | Sycamore Drive       | Evergreen Drive       | Oak Avenue               | 306.9  | 9.1   | 20.1     | Reconstruct       | \$396,606   |
| 8                   | 0000RD1247 | Ontario Street       | Phillip Street W.     | East Street S.           | 76.1   | 12.2  | 20.3     | Reconstruct       | \$131,776   |
| 9                   | 0000RD0567 | Confederation Street | Christina Street S.   | west end                 | 114.2  | 12.2  | 20.5     | Reconstruct       | \$197,806   |
| 10                  | 0000RD0576 | Kenny Street         | Tashmoo Avenue        | 544m South               | 544.8  | 6.7   | 20.5     | Reconstruct       | \$518,300   |
| 11                  | 0000RD2764 | Huron Boulevard      | Tashmoo Avenue        | Vidal Street S.          | 426.6  | 7.3   | 20.7     | Reconstruct       | \$442,188   |
| 12                  | 0000RD1902 | Ontario Street       | Stockwell Street      | Phillip Street W.        | 78.8   | 12.2  | 20.7     | Reconstruct       | \$136,462   |
| 13                  | 0000RD1529 | Blackwell Sideroad   | Waubuno Road          | Churchill Line           | 1360.2 | 6.0   | 20.8     | Reconstruct       | \$1,158,862 |
| 14                  | 0000RD2126 | Aberdeen Avenue      | Lorne Crescent        | Sycamore Drive           | 88.6   | 9.1   | 21       | Reconstruct       | \$114,452   |
| 15                  | 0000RD0645 | Errol Road East      | McCrie Street         | Giffel Road              | 49.6   | 12.2  | 21       | Reconstruct       | \$85,910    |
| 16                  | 0000RD0257 | Palmerston Street N. | Cobden Street         | Cameron Street           | 81.2   | 7.3   | 21.1     | Reconstruct       | \$84,206    |
| 17                  | 0000RD1744 | Lewis Road           | Lakeshore Road        | Clearwater Court         | 75.8   | 9.1   | 21.2     | Reconstruct       | \$97,980    |
| 18                  | 0000RD1853 | Maxwell Street       | Stacy Court           | Roger Street             | 86.8   | 11.0  | 21.2     | Reconstruct       | \$135,610   |
| 19                  | 0000RD1327 | Maxwell Street       | Roger Street          | Indian Road N.           | 95.1   | 11.0  | 21.5     | Reconstruct       | \$148,532   |
| 20                  | 0000RD2934 | Cathcart Boulevard   | Oakridge Trail        | Marianna Place           | 146.6  | 13.4  | 21.7     | Reconstruct       | \$278,888   |
| 21                  | 0000RD0497 | Clifford Street      | Christina Street S.   | west end                 | 313.2  | 11.0  | 21.7     | Reconstruct       | \$489,190   |
| 22                  | 0000RD1323 | Essex Street         | Forsyth Street N.     | College Avenue N.        | 77.9   | 9.1   | 21.8     | Reconstruct       | \$100,678   |
| 23                  | 0000RD2766 | Campbell Street      | Under Vidal Street S  | Brock Street S.          | 97.9   | 11.0  | 21.9     | Reconstruct       | \$152,934   |
| 24                  | 0000RD1194 | Cathcart Boulevard   | Hogan Street          | Dell Avenue              | 117.2  | 13.4  | 21.9     | Reconstruct       | \$222,940   |
| 25                  | 0000RD1425 | George Street        | Front Street N.       | west end                 | 77.7   | 12.1  | 21.9     | Reconstruct       | \$133,480   |
| 26                  | 0000RD1624 | Hamilton Road        | Wildwood Drive        | Kaymar Crescent          | 140.6  | 11.0  | 21.9     | Reconstruct       | \$219,674   |
| 27                  | 0000RD3168 | Huron Boulevard      | Tashmoo Avenue        | east end                 | 61.2   | 7.3   | 21.9     | Reconstruct       | \$63,474    |
| 28                  | 0000RD1814 | Poplar Avenue        | Evergreen Drive       | north end                | 39.4   | 9.1   | 21.9     | Reconstruct       | \$50,978    |
| 29                  | 0000RD0385 | Hickory Avenue       | Montcalm Avenue       | Indian Road N.           | 80.9   | 9.1   | 22       | Reconstruct       | \$104,512   |
| 30                  | 0000RD0967 | Davis Street         | Victoria Street S.    | Julia Street             | 74.3   | 10.4  | 22.3     | Reconstruct       | \$109,766   |
| 31                  | 0000RD1858 | Palmerston Street N. | Cromwell Street       | Cobden Street            | 81.4   | 7.3   | 22.3     | Reconstruct       | \$84,348    |
| 32                  | 0000RD3043 | Walnut Avenue S.     | Wellington Street     | Kathleen Avenue          | 102.9  | 9.1   | 22.5     | Reconstruct       | \$132,912   |
| 33                  | 0000RD3377 | Gladwish Drive       | Prescott Drive        | Plank Road               | 606.2  | 6.0   | 22.6     | Reconstruct       | \$516,454   |
| 34                  | 0000RD0353 | Hickory Avenue       | Montcalm Avenue       | Aberdeen Avenue          | 96.1   | 9.1   | 22.6     | Reconstruct       | \$124,250   |
| 35                  | 0000RD0223 | Mack Avenue          | Kintail Street        | Ontario Street           | 237.9  | 9.1   | 22.6     | Reconstruct       | \$307,430   |
| 36                  | 0000RD3160 | Gladwish Drive       | Prescott Drive        | 651m N of Prescott Dr.   | 651.1  | 6.0   | 22.7     | Reconstruct       | \$554,794   |
| 37                  | 0000RD1341 | Birch Avenue         | Walnut Avenue N.      | Cherry Drive             | 90.4   | 9.1   | 22.8     | Reconstruct       | \$116,866   |
| 38                  | 0000RD0463 | Bruce Street         | Hansard Lane          | Mulberry Street          | 111.0  | 9.1   | 22.8     | Reconstruct       | \$143,420   |
| 39                  | 0000RD1267 | Palmerston Street N. | Cameron Street        | Bright Street            | 83.4   | 7.3   | 22.9     | Reconstruct       | \$86,478    |
| 40                  | 0000RD3406 | Imperial Avenue      | Vidal Street S.       | 57m E of Vidal Street S. | 57.1   | 6.5   | 23.2     | Reconstruct       | \$52,682    |
| 41                  | 0000RD0705 | Old Lakeshore Road   | Kathleen Avenue       | James Street W.          | 70.2   | 6.7   | 24.4     | Reconstruct       | \$66,740    |
| 42                  | 0000RD3338 | Westbury Court       | Westbury Court        | west end                 | 43.6   | 9.1   | 24.4     | Reconstruct       | \$56,374    |
| 43                  | 0000RD1554 | Old Lakeshore Road   | Beachwood Avenue      | Strathuron Avenue        | 61.3   | 6.7   | 24.7     | Reconstruct       | \$58,362    |
| 44                  | 0000RD1600 | Aberdeen Avenue      | Sycamore Drive        | Oak Avenue               | 78.4   | 9.1   | 25       | Reconstruct       | \$101,246   |
| 45                  | 0000RD1049 | Errol Road East      | Tawny Road            | Concordia Drive          | 172.2  | 11.0  | 25.1     | Reconstruct       | \$268,948   |
| 46                  | 0000RD1596 | Errol Road East      | Indian Road N.        | Windemere Crescent       | 413.7  | 12.2  | 25.1     | Reconstruct       | \$716,674   |
| 47                  |            | Kintail Street       | Russell Street S.     | Conrad Street            | 164.8  | 9.1   | 25.3     | Reconstruct       | \$213,000   |
| 48                  |            | Palmerston Street N. | Davis Street          | Cromwell Street          | 75.2   | 7.3   | 25.3     | Reconstruct       | \$77,958    |
| 49                  | 0000RD2750 |                      | Williams Drive        | 18m S of Highway 40      | 156.0  | 6.5   | 25.5     | Reconstruct       | \$143,988   |
| 50                  | 0000RD0373 | Talfourd Street      | Elsfield Crescent     | Lansdowne Avenue S.      | 86.2   | 9.2   | 26.1     | Reconstruct       | \$112,606   |

Note: Road Only Priority List will be updated based on future updated data

#### **Road Only Priority Listing Based on Known Problems**

| Priority<br>Listing | Section ID | Street             | From                   | То                           | Problem<br>Known | Cost (\$)   |
|---------------------|------------|--------------------|------------------------|------------------------------|------------------|-------------|
| 1                   | 0000RD2700 | Blackwell Sideroad | Brookview Court        | Augusta Boulevard            | Yes              | \$28,116    |
| 2                   | 0000RD0016 | Blackwell Sideroad | Confederation Line     | south service entrance       | Yes              | \$257,502   |
| 3                   | 0000RD2811 | Blackwell Sideroad | Glen Abbey Drive       | north service entrance       | Yes              | \$24,620    |
| 4                   | 0000RD0978 | Blackwell Sideroad | Lakeshore Road         | Lake Huron Shore             | Yes              | \$15,004    |
| 5                   | 0000RD2356 | Blackwell Sideroad | Michigan Line          | Blackwell Road               | Yes              | \$221,933   |
| 6                   | 0000RD2699 | Blackwell Sideroad | north service entrance | Brookview Court              | Yes              | \$140,296   |
| 7                   | 0000RD1529 | Blackwell Sideroad | Waubuno Road           | Churchill Line               | Yes              | \$1,158,862 |
| 8                   | 0000RD1598 | Plank Road         | Duff Drive             | Highway 40                   | Yes              | \$330,718   |
| 9                   | 0000RD3348 | Plank Road         | Gladwish Drive         | Duff Drive                   | Yes              | \$320,494   |
| 10                  | 0000RD0317 | Plank Road         | Gladwish Drive         | McGregor Sideroad            | Yes              | \$1,639,816 |
| 11                  | 0000RD0480 | Plank Road         | Indian Road South      | Indian Road South            | Yes              | \$71,852    |
| 12                  | 0000RD3210 | Plank Road         | McGregor Sideroad      | 69m W of Indian Road / ramps | Yes              | \$732,010   |
| 13                  | 0000RD1603 | Waterworks Road    | Churchill Line         | 1353m S Churchill Line (CL)  | Yes              | \$178,662   |
| 14                  | 0000RD1765 | Waterworks Road    | Michigan Line          | Lakeshore Road               | Yes              | \$2,243,032 |
| 15                  | 0000RD2551 | Scott Road         | LaSalle Line           | 365m north                   | Yes              | \$550,000   |

## Sanitary Sewer Only Top 10 Priority Listing

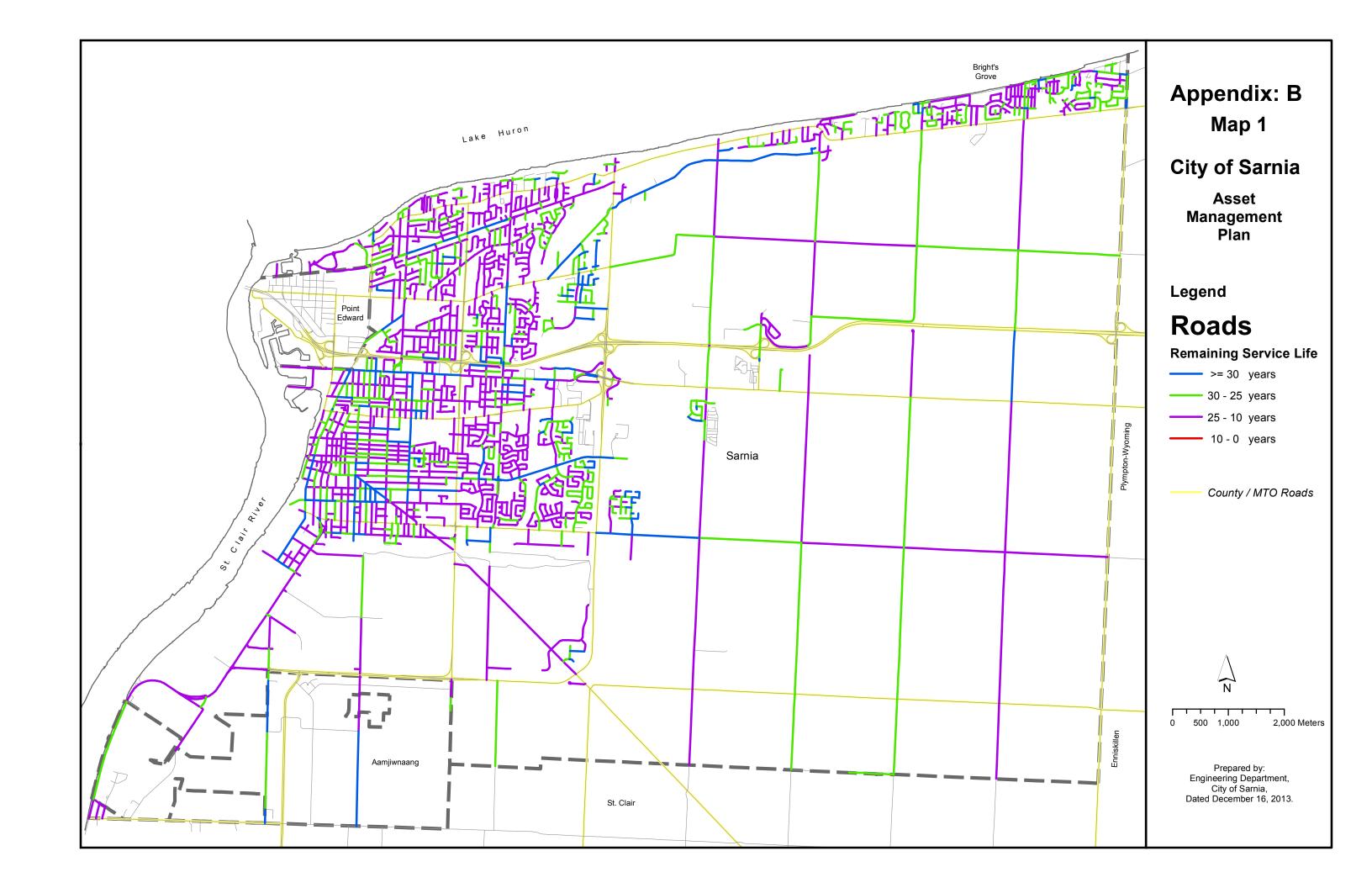
| Priority<br>Listing | Integr<br>Code | Road            | То                   | From                | Drainage Area   | Santiary<br>Sewer<br>Score | Sanitary<br>Cost |
|---------------------|----------------|-----------------|----------------------|---------------------|-----------------|----------------------------|------------------|
| 1                   | IS1345         | Cromwell Street | Vidal Street N.      | Victoria Street N.  | Cromwell Street | 3.79                       | \$200,088.77     |
| 2                   | IS1882         | Front Street N. | Davis Street         | Ferry Dock Hill     | Cromwell Street | 4.53                       | \$261,220.79     |
| 3                   | IS1388         | London Road     | Mackenzie Street N.  | Mitton Street N.    | -               | 24.37                      | \$180,811.98     |
| 4                   | IS3192         | London Road     | College Avenue N.    | Fleming Street      | -               | 24.45                      | \$91,154.93      |
| 5                   | IS3027         | Front Street S. | Johnston Street      | Front Street N.     | Devine Street   | 26.07                      | \$1,091,926.75   |
| 6                   | IS3000         | Vidal Street N. | Davis Street         | Cromwell Street     | Cromwell Street | 31.17                      | \$85,509.17      |
| 7                   | IS2033         | George Street   | Russell Street N.    | Mackenzie Street N. | Cromwell Street | 31.92                      | \$445,310.78     |
| 8                   | IS1243         | George Street   | Palmerston Street N. | Russell Street N.   | Cromwell Street | 31.92                      | \$242,027.07     |
| 9                   | IS2349         | Ontario Street  | East Street South    | Mack Avenue         | Devine Street   | 36.55                      | \$92,294.87      |
| 10                  | IS2220         | Ontario Street  | Palmerston Street S. | Devine Street       | Devine Street   | 40.99                      | \$237,968.24     |

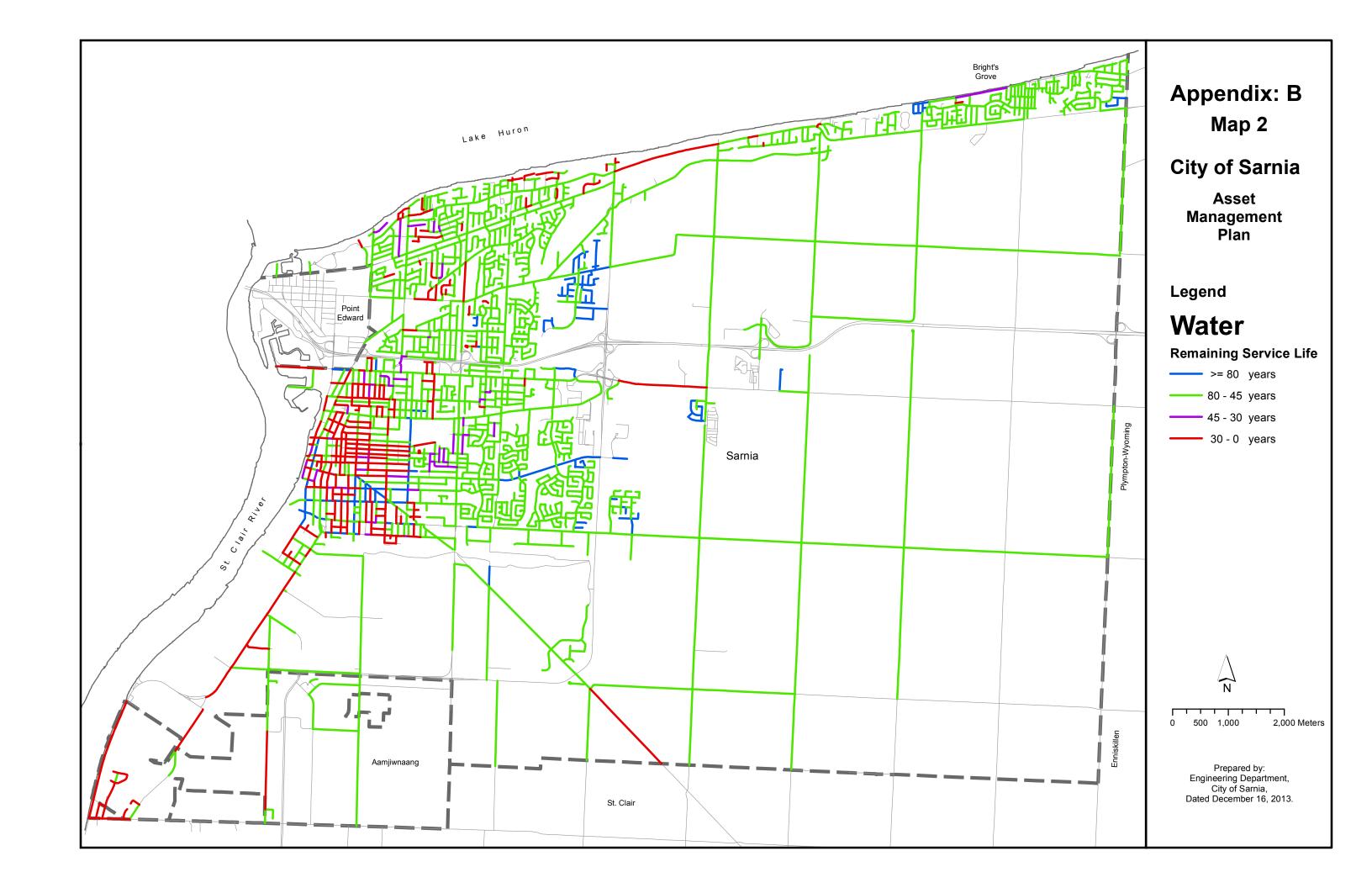
Note: Sanitary Sewer Only Priority List will be updated based on future updated data

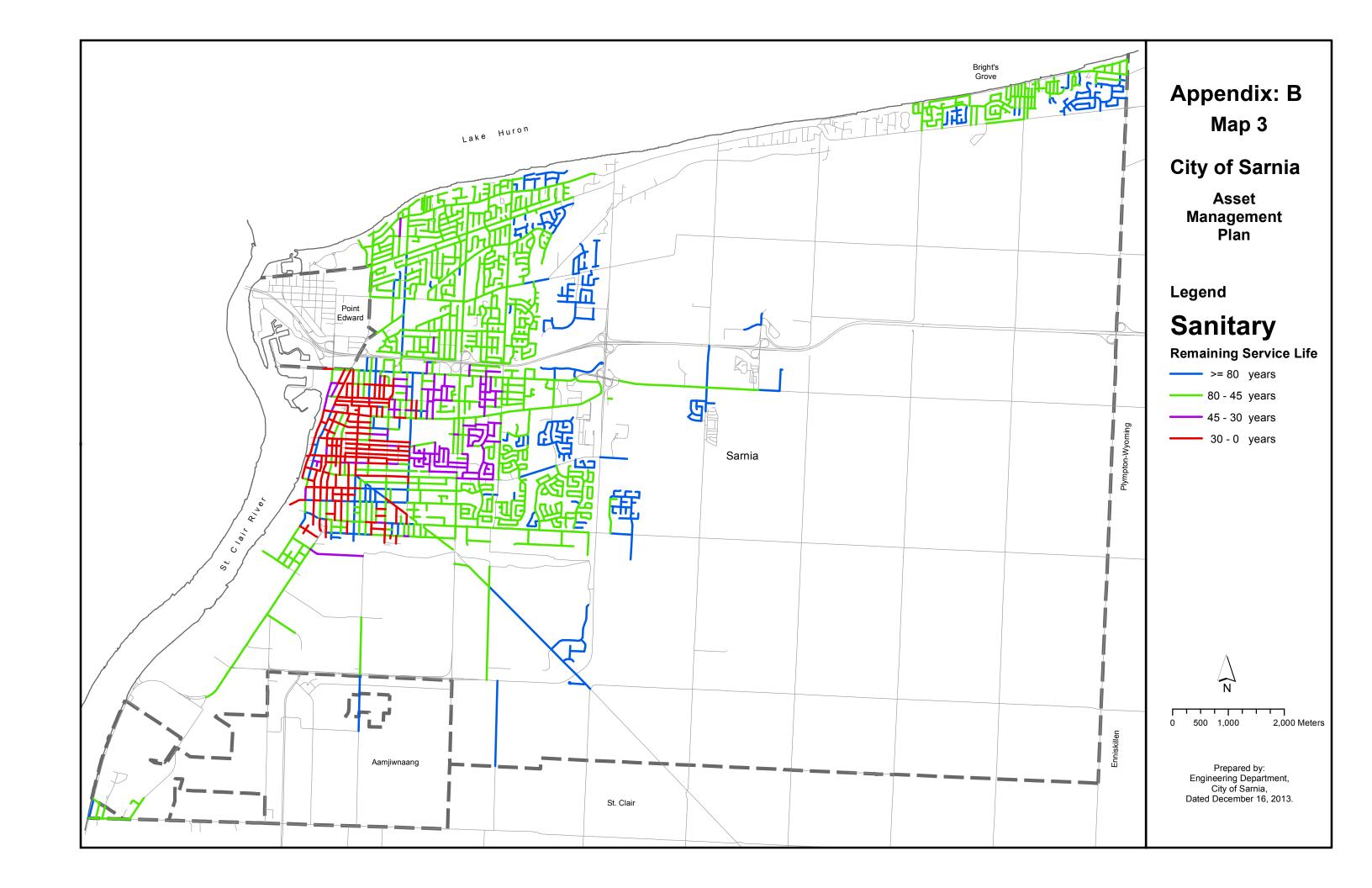
#### **Combined Complete Reconstruction Priority Listing Top 50 Sections**

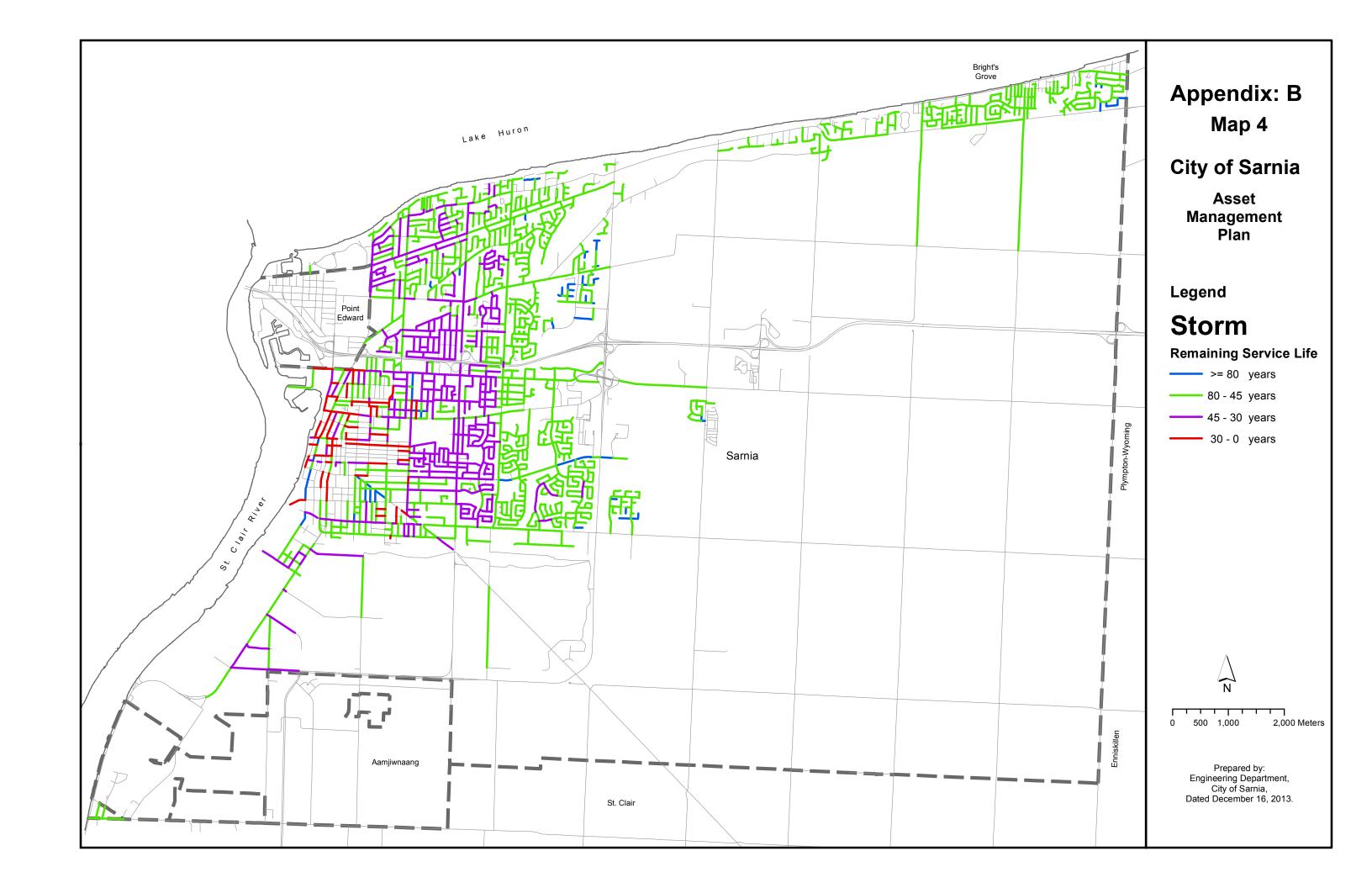
| Priority<br>Listing | Integr<br>Code | Road              | То                   | From                 | Project Type |       |          |       | Drainage<br>Area | Combined<br>cost<br>(2012 Dollar<br>Value) |
|---------------------|----------------|-------------------|----------------------|----------------------|--------------|-------|----------|-------|------------------|--------------------------------------------|
| 1                   | IS2018         | Capel Street      | Nelson Street        | Admiral Avenue       | Road         | Water | Sanitary | Storm | Exmouth Street   | \$528,760.81                               |
| 2                   | IS1118         | Capel Street      | Maxwell Street       | Nelson Street        | Road         | Water | Sanitary | Storm | Exmouth Street   | \$406,629.38                               |
| 3                   | IS1386         | East Street N.    | Lincoln Park Avenue  | Maxwell Street       | Road         | Water | Sanitary | Storm | Exmouth Street   | \$596,539.75                               |
| 4                   | IS2286         | Lydia Street      | Nelson Street        | Felix Street         | Road         | Water | Sanitary | Storm | Exmouth Street   | \$207,117.78                               |
| 5                   | IS1258         | Nelson Street     | Felix Street         | Lydia Street         | Road         | Water | Sanitary | Storm | Exmouth Street   | \$257,442.71                               |
| 6                   | IS1809         | Lydia Street      | Maxwell Street       | Nelson Street        | Road         | Water | Sanitary | Storm | Exmouth Street   | \$660,799.87                               |
| 7                   | IS2300         | Maxwell Street    | Capel Street         | Lydia Street         | Road         | Water | Sanitary | Storm | Exmouth Street   | \$284,779.77                               |
| 8                   | IS1724         | Talfourd Street   | Vidal Street S.      | Queen Street         | Road         | Water | Sanitary | Storm | Devine Street    | \$308,924.00                               |
| 9                   | IS2565         | Talfourd Street   | Stuart Street        | Emma Street          | Road         | Water | Sanitary | Storm | Devine Street    | \$370,809.11                               |
| 10                  | IS1707         | Talfourd Street   | Queen Street         | Christina Street S.  | Road         | Water | Sanitary | Storm | Devine Street    | \$408,176.19                               |
| 11                  | IS1270         | Talfourd Street   | Crawford Street      | Margaret Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$227,697.43                               |
| 12                  | IS1277         | Talfourd Street   | Emma Street          | Crawford Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$399,627.14                               |
| 13                  | IS1656         | Talfourd Street   | Margaret Street      | Brock Street S.      | Road         | Water | Sanitary | Storm | Devine Street    | \$434,775.57                               |
| 14                  | IS1280         | Talfourd Street   | Mitton Street S.     | Stuart Street        | Road         | Water | Sanitary | Storm | Devine Street    | \$520,447.18                               |
| 15                  | IS1818         | Talfourd Street   | Proctor Street       | Mitton Street S.     | Road         | Water | Sanitary | Storm | Devine Street    | \$321,342.41                               |
| 16                  | IS1307         | Talfourd Street   | Brock Street S.      | Vidal Street S.      | Road         | Water | Sanitary | Storm | Devine Street    | \$344,419.16                               |
| 17                  | IS1920         | Queen Street      | Devine Street        | Talfourd Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$394,323.04                               |
| 18                  | IS1115         | Margaret Street   | Richard Street       | Talfourd Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$350,093.49                               |
| 19                  | IS1119         | Margaret Street   | Devine Street        | Richard Street       | Road         | Water | Sanitary | Storm | Devine Street    | \$459,223.82                               |
| 20                  | IS1298         | Johnston Street   | Queen Street         | Christina Street S.  | Road         | Water | Sanitary | Storm | Devine Street    | \$194,680.66                               |
| 21                  | IS2217         | Queen Street      | Talfourd Street      | Johnston Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$347,173.95                               |
| 22                  | IS1284         | Queen Street      | Confederation Street | Devine Street        | Road         | Water | Sanitary | Storm | Devine Street    | \$568,586.56                               |
| 23                  | IS1919         | Vidal Street S.   | Devine Street        | Talfourd Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$1,292,917.19                             |
| 24                  | IS0841         | Emma Street       | Richard Street       | Talfourd Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$308,714.46                               |
| 25                  | IS1242         | Emma Street       | Devine Street        | Richard Street       | Road         | Water | Sanitary | Storm | Devine Street    | \$458,315.54                               |
| 26                  | IS2911         | John Street       | Mary Street          | Devine Street        | Road         | Water | Sanitary | Storm | Devine Street    | \$554,296.07                               |
| 27                  | IS1655         | Mary Street       | John Street          | Brock Street S.      | Road         | Water | Sanitary | Storm | Devine Street    | \$454,088.73                               |
| 28                  | IS1290         | Stuart Street     | Talfourd Street      | Wellington Street    | Road         | Water | Sanitary | Storm | Devine Street    | \$1,364,287.42                             |
| 29                  | IS2912         | John Street       | Confederation Street | Mary Street          | Road         | Water | Sanitary | Storm | Devine Street    | \$308,311.05                               |
| 30                  | IS2483         | Emma Street       | Confederation Street | Devine Street        | Road         | Water | Sanitary | Storm | Devine Street    | \$986,326.06                               |
| 31                  | IS1238         | Richard Street    | Emma Street          | Margaret Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$562,218.52                               |
| 32                  | IS1354         | Richard Street    | Stuart Street        | Emma Street          | Road         | Water | Sanitary | Storm | Devine Street    | \$384,112.00                               |
| 33                  | IS1708         | Stuart Street     | Richard Street       | Talfourd Street      | Road         | Water | Sanitary | Storm | Devine Street    | \$511,677.15                               |
| 34                  | IS3007         | East Street S.    | Confederation Street | Ontario Street       | Road         | Water | Sanitary | Storm | Devine Street    | \$291,226.53                               |
| 35                  | IS1872         | Stuart Street     | Devine Street        | Richard Street       | Road         | Water | Sanitary | Storm | Devine Street    | \$483,574.93                               |
| 36                  | IS2137         | Richard Street    | Mitton Street S.     | Stuart Street        | Road         | Water | Sanitary | Storm | Devine Street    | \$370,191.36                               |
| 37                  | IS3209         | Ontario Street    | Devine Street        | Gibson Street        | Road         | Water | Sanitary | Storm | Devine Street    | \$181,987.43                               |
| 38                  | IS2349         | Ontario Street    | East Street South    | Mack Avenue          | Road         | Water | Sanitary | Storm | Devine Street    | \$242,409.22                               |
| 39                  | IS2220         | Ontario Street    | Palmerston Street S. | Devine Street        | Road         | Water | Sanitary | Storm | Devine Street    | \$402,054.44                               |
| 40                  | IS1802         | Ontario Street    | Mack Avenue          | Palmerston Street S. | Road         | Water | Sanitary | Storm | Devine Street    | \$315,438.78                               |
| 41                  | IS1917         | Wellington Street | Russell Street S.    | Mackenzie Street S.  | Road         | Water | Sanitary | Storm | East Street      | \$1,004,766.73                             |
| 42                  | IS1117         | Wellington Street | East Street S.       | Russell Street S.    | Road         | Water | Sanitary | Storm | East Street      | \$854,281.08                               |
| 43                  | IS1450         | Cromwell Street   | Palmerston Street N. | Russell Street N.    | Road         | Water | Sanitary | Storm | East Street      | \$457,499.80                               |
| 44                  | IS1281         | Cromwell Street   | East Street N.       | Palmerston Street N. | Road         | Water | Sanitary | Storm | East Street      | \$521,429.95                               |
| 45                  | IS1851         | Cameron Street    | Palmerston Street N. | Russell Street N.    | Road         | Water | Sanitary | Storm | East Street      | \$598,818.97                               |
| 46                  | IS1295         | Cameron Street    | East Street N.       | Palmerston Street N. | Road         | Water | Sanitary | Storm | East Street      | \$711,727.80                               |
| 47                  | IS0690         | Cobden Street     | Palmerston Street N. | Russell Street N.    | Road         | Water | Sanitary | Storm | East Street      | \$567,991.02                               |
| 48                  | IS1289         | Cobden Street     | East Street N.       | Palmerston Street N. | Road         | Water | Sanitary | Storm | East Street      | \$556,094.28                               |
| 49                  | IS1772         | Bright Street     | East Street N.       | Palmerston Street N. | Road         | Water | Sanitary | Storm | East Street      | \$523,074.09                               |
| 50                  | IS1086         | Bright Street     | Palmerston Street N. | Russell Street N.    | Road         | Water | Sanitary | Storm | East Street      | \$821,405.66                               |

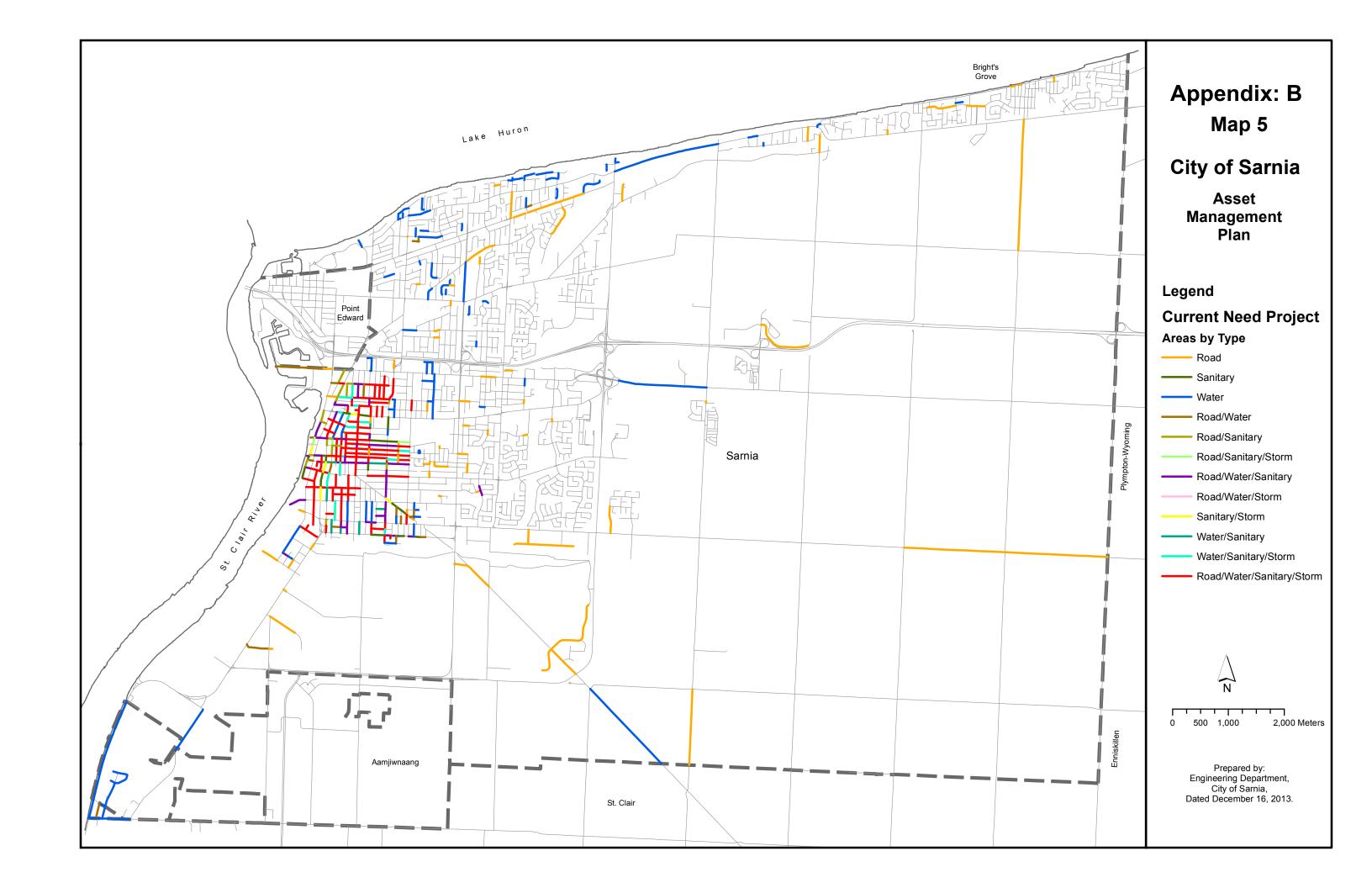
 $Note: Combined\ complete\ reconstruction\ priority\ list\ will\ be\ updated\ based\ on\ future\ updated\ data$ 


# Watermain Only Reconstruction Priority Listing Top 50 Sections


| Priority<br>Listing | Integr<br>Code | Road                   | From                 | То                     | Water<br>Score with<br>Over-Ride | Water Cost     |
|---------------------|----------------|------------------------|----------------------|------------------------|----------------------------------|----------------|
| 1                   | IS1812         | Copland Road           | Claxton Avenue       | Alexander Street       | 2.73                             | \$76,551.73    |
| 2                   | IS1176         | Copland Road           | Alexander Street     | Maxwell Street         | 3.70                             | \$123,929.46   |
| 3                   | IS2859         | Copland Road           | Maxwell Street       | London Road            | 10.12                            | \$195,146.75   |
| 4                   | IS0672         | Charlesworth Drive     | McKay Avenue         | Amesbury Court         | 10.89                            | \$258,877.33   |
| 5                   | IS2214         | Rosedale Avenue        | Colborne Road        | Pineview Avenue        | 17.07                            | \$161,152.12   |
| 6                   | IS0672         | Charlesworth Drive     | Amesbury Court       | McKay Avenue           | 10.89                            | \$258,877.33   |
| 7                   | IS1933         | Kathleen Avenue        | East Street South    | Russell Street South   | 17.84                            | \$340,095.93   |
| 8                   | IS1925         | Cotterbury Street      | Exmouth Street       | Eddy Drive             | 19.25                            | \$338,633.41   |
| 9                   | IS1557         | Lakeshore Road         | Blackwell Sideroad   | Modeland Road          | 20.94                            | \$1,260,619.51 |
| 10                  | IS1225         | Devine Street          | Stockwell Street     | East Street South      | 21.57                            | \$79,372.75    |
| 11                  | IS2275         | Chudleigh Road         | Rutherglen Drive     | west end               | 21.83                            | \$135,630.90   |
| 12                  | IS2368         | Exmouth Street         | Exmouth Street fork  | Harbour Road           | 22.19                            | \$353,760.48   |
| 13                  | IS1820         | Copland Road           | Exmouth Street       | Claxton Avenue         | 23.68                            | \$81,301.31    |
| 14                  | IS0712         | Oldham Place           | north end            | Clarence Street        | 23.74                            | \$48,723.54    |
| 15                  | IS2197         | College Avenue North   | George Street        | Essex Street           | 25.02                            | \$81,388.80    |
| 16                  | IS1716         | Rutherglen Drive       | Chudleigh Road       | Hillcrest Nisbet Drive | 26.22                            | \$64,483.22    |
| 17                  | IS1968         | Stuart Street          | Confederation Street | Devine Street          | 26.25                            | \$241,528.94   |
| 18                  | IS0393         | Chippewa Street        | Shamrock Street      | Rose Street            | 27.24                            | \$66,867.03    |
| 19                  | IS1720         | Murphy Road            | Haight Lane          | north end (Lake Huron) | 28.25                            | \$19,983.20    |
| 20                  | IS1205         | Exmouth Street         | Venetian Boulevard   | Harbour Road           | 30.02                            | \$98,882.73    |
| 21                  | IS1197         | Braemar Lane           | Murphy Road          | Wilgrun Drive          | 30.73                            | \$60,167.60    |
| 22                  | IS2714         | LaSalle Line           | Virgil Avenue        | Wahboose Circle        | 31.82                            | \$234,094.72   |
| 23                  | IS0296         | Plank Road             | Kimball Road         | NA                     | 34.83                            | \$1,558,861.01 |
| 24                  | IS2712         | LaSalle Line           | Virgil Avenue        | Fairview Boulevard     | 35.15                            | \$68,175.04    |
| 25                  | IS1479         | LaSalle Line           | Vidal Street South   | Wahboose Circle        | 35.15                            | \$80,162.86    |
| 26                  | IS0534         | St. Clair Parkway      | La Salle Line        | Marlborough Lane       | 35.27                            | \$217,534.14   |
| 27                  | IS2358         | Hillcrest Drive        | Hillcrest Drive      | NA                     | 35.64                            | \$161,784.62   |
| 28                  | IS0707         | Hillcrest Nisbet Drive | Rutherglen Drive     | Hillcrest Drive        | 35.64                            | \$157,957.89   |
| 29                  | IS1040         | Lake Huron Parkway     | Green Acres Road     | NA                     | 35.64                            | \$128,996.17   |
| 30                  | IS2987         | Christina Street South | St. Andrew Street    | Tecumseh Street        | 35.88                            | \$169,187.11   |
| 31                  | IS2087         | LaSalle Line           | Wayne Avenue         | St. Clair Parkway      | 37.74                            | \$73,803.77    |
| 32                  | IS1492         | Superior Street        | Germain Street       | Hickory Avenue         | 52.89                            | \$223,159.80   |
| 33                  | IS2083         | Walnut Avenue North    | Oak Avenue           | Walnut Avenue South    | 54.31                            | \$22,909.82    |
| 34                  | IS0937         | Lecaron Avenue         | Lakeshore Road       | Charlesworth Drive     | 60.89                            | \$337,432.79   |
| 35                  | IS2352         | Woodrowe Avenue        | east end             | Christina Street North | 60.89                            | \$327,207.55   |
| 36                  | IS0588         | Tweedsmuir Avenue      | Germain Street       | Mayfair Drive          | 61.25                            | \$149,555.70   |
| 37                  | IS1677         | Willa Drive            | Sylvia Avenue        | Woodhaven Avenue       | 61.56                            | \$112,477.60   |
| 38                  | IS0345         | Ontario Street         | Agnes Street         | Campbell Street        | 62.01                            | \$306,757.08   |
| 39                  | IS1446         | Siddall Street         | Wellington Street    | Ross Avenue            | 62.31                            | \$ -           |
| 40                  | IS1149         | Siddall Street         | Ross Avenue          | Talfourd Street        | 62.31                            | \$ -           |
| 41                  | IS0352         | Aberdeen Avenue        | Hickory Avenue       | Hemlock Avenue         | 63.25                            | \$47,268.96    |
| 42                  | IS1861         | Superior Street        | London Road          | Germain Street         | 64.23                            | \$176,947.26   |
| 43                  | IS1648         | Egmond Drive           | Valleyfield Drive    | Devonshire Road        | 64.23                            | \$ -           |
| 44                  | IS1593         | Kemsley Drive          | Athena Avenue        | Kim Street             | 64.23                            | \$84,358.20    |
| 45                  | IS2108         | Kemsley Drive          | Kim Street           | Coral Way              | 64.23                            | \$84,358.20    |
| 46                  | IS0353         | Hickory Avenue         | Aberdeen Avenue      | Montcalm Avenue        | 64.58                            | \$73,416.89    |
| 47                  | IS0790         | Charlesworth Drive     | Evan Street          | McKay Avenue           | 65.90                            | \$ -           |
| 48                  | IS2126         | Aberdeen Avenue        | Sycamore Drive       | Lorne Crescent         | 66.58                            | \$62,292.18    |
| 49                  | IS0770         | Egmond Drive           | Charlesworth Drive   | Valleyfield Drive      | 67.56                            | \$ -           |
| 50                  | IS3102         | Egmond Drive           | Roosevelt Drive      | Cathcart Boulevard     | 67.56                            | \$133,487.96   |


Note: Watermain priority listing will be updated based on future updated data


# Appendix: B


# **Linear Infrastructure Needs Maps**











# Appendix: C

## **Unit Prices of Linear Assets**

## Weighted Average Unit Price Used in Financing Strategies

Road Weigthed Average Unit Cost per Running Metre

| Road Class                          | Length<br>(km) | % Net Work | Reconstruction cost/m | Resurface cost/m | Major<br>Rehabilitation<br>with full curb<br>repairs cost/m |  |
|-------------------------------------|----------------|------------|-----------------------|------------------|-------------------------------------------------------------|--|
| Local                               | 253            | 57.63%     | \$1,292.20            | \$200.20         | \$559.00                                                    |  |
| Collector                           | 61             | 13.78%     | \$1,391.60            | \$215.60         | \$584.00                                                    |  |
| Arterial                            | 64             | 14.62%     | \$1,917.00            | \$297.00         | \$719.00                                                    |  |
| Rural                               | 61             | 13.96%     | \$1,050.80            | \$162.80         |                                                             |  |
| Total                               | 439            | 100%       |                       |                  |                                                             |  |
| Average Cost                        |                |            | \$1,363.55            | \$211.25         | \$590.20                                                    |  |
| Unit Price Used in Financial Plan = |                |            |                       |                  |                                                             |  |
| Current Need/Length =               |                |            |                       |                  |                                                             |  |
| \$46,103,406.34/34920.36m =         |                |            | \$1,320.24            | \$225.81         | \$601.20                                                    |  |

Watermian Weighted Average Unit Cost per Running Metre

| Water<br>Diameter<br>(mm)    | Length<br>(km) | % Net Work | Reconstruction Cost/m | Reconstruction Cost<br>include Trench<br>Repair/m |  |
|------------------------------|----------------|------------|-----------------------|---------------------------------------------------|--|
| 25                           | 0.09           | 0.02%      | \$461.82              | \$631.82                                          |  |
| 38                           | 0.04           | 0.01%      | \$461.82              | \$631.82                                          |  |
| 50                           | 0.36           | 0.07%      | \$461.82              | \$631.82                                          |  |
| 75                           | 0.07           | 0.01%      | \$461.82              | \$631.82                                          |  |
| 100                          | 30.27          | 6.10%      | \$461.82              | \$631.82                                          |  |
| 150                          | 220.07         | 44.37%     | \$461.82              | \$631.82                                          |  |
| 200                          | 79.70          | 16.07%     | \$525.03              | \$695.03                                          |  |
| 250                          | 14.25          | 2.87%      | \$595.98              | \$765.98                                          |  |
| 300                          | 108.14         | 21.80%     | \$666.93              | \$836.93                                          |  |
| 350                          | 1.68           | 0.34%      | \$711.89              | \$881.89                                          |  |
| 400                          | 14.06          | 2.83%      | \$715.95              | \$885.95                                          |  |
| 450                          | 16.21          | 3.27%      | \$795.93              | \$965.93                                          |  |
| 500                          | 2.77           | 0.56%      | \$907.24              | \$1,077.24                                        |  |
| 600                          | 7.77           | 1.57%      | \$1,091.34            | \$1,261.34                                        |  |
| 750                          | 0.00           | 0.00%      | \$1,232.82            | \$1,402.82                                        |  |
| 900                          | 0.51           | 0.10%      | \$1,428.18            | \$1,598.18                                        |  |
| 1050                         | 0.00           | 0.00%      | \$1,623.53            | \$1,793.53                                        |  |
| Total 496 100%               |                |            |                       |                                                   |  |
| Average Cost \$552.87        |                |            |                       | \$722.87                                          |  |
| Unit Price Us<br>Need/Length | \$616.04       |            |                       |                                                   |  |

## **Weighted Average Unit Price Used in Financing Strategies**

Sanitary Sewers Weighted Average Unit Cost per Running Metre

|            | (km)   | % Net Work | Reconstruction<br>Cost/m | include Trench<br>Repair/m | on current need<br>% |
|------------|--------|------------|--------------------------|----------------------------|----------------------|
| 12         | 0.003  | 0.00%      | \$0.00                   | \$0.00                     | \$0.00               |
| 50         | 0.03   | 0.01%      | \$530.19                 | \$778.19                   | \$584.06             |
| 100        | 0.11   | 0.03%      | \$530.19                 | \$778.19                   | \$584.06             |
| 120        | 0.00   | 0.00%      | \$530.19                 | \$778.19                   | \$584.06             |
| 150        | 0.56   | 0.17%      | \$530.19                 | \$778.19                   | \$584.06             |
| 200        | 174.58 | 51.92%     | \$530.19                 | \$778.19                   | \$584.06             |
| 250        | 50.78  | 15.10%     | \$581.79                 | \$829.79                   | \$635.66             |
| 300        | 41.60  | 12.37%     | \$684.99                 | \$932.99                   | \$738.86             |
| 350        | 3.71   | 1.10%      | \$690.50                 | \$938.50                   | \$744.37             |
| 375        | 14.74  | 4.38%      | \$710.79                 | \$958.79                   | \$764.66             |
| 400        | 4.14   | 1.23%      | \$732.29                 | \$980.29                   | \$786.16             |
| 450        | 12.12  | 3.60%      | \$775.29                 | \$1,023.29                 | \$829.16             |
| 480        | 0      | 0.00%      | \$782.74                 | \$1,030.74                 | \$836.60             |
| 500        | 1.43   | 0.43%      | \$814.13                 | \$1,062.13                 | \$868.00             |
| 525        | 2.28   | 0.68%      | \$749.49                 | \$997.49                   | \$803.36             |
| 600        | 6.46   | 1.92%      | \$781.74                 | \$1,029.74                 | \$835.61             |
| 675        | 4.20   | 1.25%      | \$1,003.62               | \$1,251.62                 | \$1,057.49           |
| 750        | 2.00   | 0.59%      | \$1,061.67               | \$1,309.67                 | \$1,115.54           |
| 800        | 0.43   | 0.13%      | \$1,061.67               | \$1,309.67                 | \$1,115.54           |
| 825        | 0.58   | 0.17%      | \$1,093.92               | \$1,341.92                 | \$1,147.79           |
| 900        | 6.60   | 1.96%      | \$1,126.17               | \$1,374.17                 | \$1,180.04           |
| 975        | 0.67   | 0.20%      | \$1,380.30               | \$1,628.30                 | \$1,434.17           |
| 1050       | 2.26   | 0.67%      | \$1,638.30               | \$1,886.30                 | \$1,692.17           |
| 1145       | 0.02   | 0.00%      | \$1,638.30               | \$1,886.30                 | \$1,692.17           |
| 1200       | 1.45   | 0.43%      | \$2,141.40               | \$2,389.40                 | \$2,195.27           |
| 1350       | 1.97   | 0.59%      | \$2,334.90               | \$2,582.90                 | \$2,388.77           |
| 1400       | 0      | 0.00%      | \$2,429.33               | \$2,677.33                 | \$2,483.19           |
| 1450       | 0      | 0.00%      | \$2,543.76               | \$2,791.76                 | \$2,597.63           |
| 1500       | 2.11   | 0.63%      | \$2,592.90               | \$2,840.90                 | \$2,646.77           |
| 1525       | 0.01   | 0.00%      | \$2,592.90               | \$2,840.90                 | \$2,646.77           |
| 1575       | 0.27   | 0.08%      | \$2,592.90               | \$2,840.90                 | \$2,646.77           |
| 1650       | 0.20   | 0.06%      | \$2,592.90               | \$2,840.90                 | \$2,646.77           |
| 1800       | 0.89   | 0.26%      | \$2,592.90               | \$2,840.90                 | \$2,646.77           |
| Total      | 336.22 | 100.00%    |                          |                            |                      |
| verage Cos |        |            | \$656.20                 | \$904.20                   | \$710.06             |

## Weighted Average Unit Price Used in Financing Strategies

Storm Sewers Weighted Average Unit Cost per Running Metre

| Storm<br>Diameter<br>(mm) | Length<br>(km) | % Net Work                         | Reconstruction<br>Cost/m | Reconstruction Cost<br>include Trench<br>Repair/m |
|---------------------------|----------------|------------------------------------|--------------------------|---------------------------------------------------|
| 50                        | 0.00           | 0.00%                              | \$657.90                 | \$905.90                                          |
| 100                       | 0.00           | 0.00%                              | \$657.90                 | \$905.90                                          |
| 150                       | 0.05           | 0.02%                              | \$657.90                 | \$905.90                                          |
| 200                       | 1.63           | 0.56%                              | \$657.90                 | \$905.90                                          |
| 250                       | 28.59          | 9.76%                              | \$657.90                 | \$905.90                                          |
| 300                       | 41.35          | 14.12%                             | \$657.90                 | \$905.90                                          |
| 350                       | 0.37           | 0.13%                              | \$679.40                 | \$927.40                                          |
| 375                       | 44.37          | 15.15%                             | \$690.15                 | \$938.15                                          |
| 400                       | 1.21           | 0.41%                              | \$700.90                 | \$948.90                                          |
| 450                       | 39.76          | 13.57%                             | \$722.40                 | \$970.40                                          |
| 500                       | 0.11           | 0.04%                              | \$739.60                 | \$987.60                                          |
| 525                       | 23.25          | 7.94%                              | \$754.65                 | \$1,002.65                                        |
| 600                       | 23.88          | 8.15%                              | \$761.10                 | \$1,009.10                                        |
| 675                       | 10.85          | 3.70%                              | \$886.23                 | \$1,134.23                                        |
| 750                       | 14.28          | 4.87%                              | \$976.53                 | \$1,224.53                                        |
| 825                       | 7.35           | 2.51%                              | \$1,041.03               | \$1,289.03                                        |
| 900                       | 13.20          | 4.51%                              | \$1,105.53               | \$1,353.53                                        |
| 975                       | 0.90           | 0.31%                              | \$1,237.11               | \$1,485.11                                        |
| 1000                      | 0.10           | 0.04%                              | \$1,260.33               | \$1,508.33                                        |
| 1050                      | 8.41           | 2.87%                              | \$1,327.41               | \$1,575.41                                        |
| 1200                      | 7.40           | 2.53%                              | \$1,456.41               | \$1,704.41                                        |
| 1350                      | 4.44           | 1.51%                              | \$1,649.91               | \$1,897.91                                        |
| 1450                      | 0.29           | 0.10%                              | \$1,768.16               | \$2,016.16                                        |
| 1500                      | 9.05           | 3.09%                              | \$1,875.66               | \$2,123.66                                        |
| 1575                      | 0.36           | 0.12%                              | \$1,913.29               | \$2,161.29                                        |
| 1650                      | 2.47           | 0.84%                              | \$1,972.41               | \$2,220.41                                        |
| 1800                      | 1.95           | 0.66%                              | \$2,359.41               | \$2,607.41                                        |
| 1900                      | 0.03           | 0.01%                              | \$2,746.41               | \$2,994.41                                        |
| 1950                      | 2.59           | 0.88%                              | \$3,004.41               | \$3,252.41                                        |
| 2025                      | 0.23           | 0.08%                              | \$3,176.41               | \$3,424.41                                        |
| 2100                      | 2.33           | 0.80%                              | \$3,391.41               | \$3,639.41                                        |
| 2250                      | 0.91           | 0.31%                              | \$3,999.55               | \$4,247.55                                        |
| 2400                      | 1.20           | 0.41%                              | \$4,552.41               | \$4,800.41                                        |
| Total                     | 292.89         | 100.00%                            |                          |                                                   |
| Average Cos               | t              |                                    | \$931.77                 | \$1,179.77                                        |
|                           |                | cial Plan = Cur<br>04.10/25,193.33 |                          | \$852.96                                          |

# Appendix: D

**Assumptions** 

## **Assumptions**

#### **Current Needs Projected by System**

#### General

- Cost is based on individual asset length and unit prices derived from tender sheets
- Unit prices are based on road class, watermains and sewer pipe diameters

### • Combined Projects

- All the buried infrastructure projects due within 15-year window are combined.
- Combined Projects cost include water installation, sewer installations and complete road reconstruction. The road reconstruction includes curb, gutter, sidewalk, boulevard, driveway repairs and etc.
- Combined sewer separation projects are same as Combined projects (a combined sewer is replaced by a sanitary and a storm sewer; water and road will also be reconstructed at the same physical location)

### • Road/Water/Sanitary/Storm Integrated costs

 Cost of either Road, Water, Sanitary or Storm includes their respective individual costs as well as the components from the combined project costs

#### Road

- If only road is in need then road minor rehabilitation (top layer resurfacing and spot curb and gutter repairs) will be done
- If one buried asset and the road are in need, then road minor rehabilitation (top layer resurfacing and spot curb and gutter repairs) will be done

- In addition to road if two or more of buried assets or a combined sewer underneath are in need, complete road reconstruction will be done
- If only one buried asset (and no road) is in need then only minor rehabilitation (top layer resurfacing of road) is counted
- If two or more buried assets (and no road) underneath are in need then complete road reconstruction will be done and road reconstruction cost will be distributed among the buried assets
- o If a rural road is in need a complete reconstruction will be done
- The road future needs have been considered as 29% (weighted average of rehabilitation cost/weighted average of reconstruction cost) of the road reconstruction cost.

### **Financial Strategy**

#### General

- Needs for the financial strategy includes current needs of linear infrastructures as of end of year 2012 and forecasted future needs in each year for up to 20 years
- Current needs costs used are from system projected output
- o Future needs costs are based on the system projected output
- In the combined projects where the road is not in need and is to be constructed, the road costs in such cases are not included in the financial plan.

#### Unit Price

#### Road

- The unit costs for the specific treatment options are based on system projected needs divide by length in need
- For road needs in combined complete reconstruction projects, the unit price are calculated using system projected needs divide by length in need

# Appendix: E

# References

### References

- [1]. Dillon Consulting Limited. *Inventory Assessment and Identification of Capital Needs for the City of Sarnia Sanitary Sewerage, Water Distribution and Road Network Infrastructure.*Sarnia: City of Sarnia, 2006.
- [2]. Building Together: Guide for Municipal Asset Management Plans,
  Ministry of Infrastructure ISBN 9878-1-4435-9990-0.

  <a href="http://www.moi.gov.on.ca/pdf/en/Municipal%20Strategy\_English\_Web.pdf">http://www.moi.gov.on.ca/pdf/en/Municipal%20Strategy\_English\_Web.pdf</a>
- [3]. Bryanne Wouters. Current Condition and Financial Assessment of the City of Sarnia's Linear Asset. Sarnia: City of Sarnia, 2012.
- [4]. Infraguide Best Practices. http://fcm.ca/home/programs/past-programs/infraguide.htm
- [5]. Water Loss Audit. Sarnia: City of Sarnia, 2008 to 2011.
- [6]. Building Together: Municipal Infrastructure Strategy-Asset

  Management Toolkit. Ministry of Infrastructure.

  <a href="http://www.moi.gov.on.ca/en/infrastructure/building\_together\_mis/tools.asp">http://www.moi.gov.on.ca/en/infrastructure/building\_together\_mis/tools.asp</a>
- [7]. Sustainability Plan. Sarnia: City of Sarnia, 2012.
- [8]. Engineered Management System Inc. 2012 Bridge and Culvert Assessment and 2013-2033 Capital Plan.

  Sarnia: City of Sarnia, 2012.
- [9]. City of Sarnia. Draft Official Plan. Sarnia: City of Sarnia, 2013.
- [10]. IMS Infrastructure Management Services. Pavement Assessment and Field data Collection Analysis and Results.

  Sarnia: City of Sarnia, 2013.
- [11]. R. V. Anderson Associates. *Pump Station Assessment*. Sarnia: City of Sarnia, 2009.
- [12]. City of Sarnia. Sarnia Wastewater Collection System Modeling and Hydraulic Assessment Master plan. Sarnia: City of Sarnia, 2012.